# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2020 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""HOLE Analysis --- :mod:`MDAnalysis.analysis.hole2.hole`
=====================================================================================
:Author: Lily Wang
:Year: 2020
:Copyright: GNU Public License v3
.. versionadded:: 1.0.0
This module contains the tools to interface with HOLE_ [Smart1993]_
[Smart1996]_ to analyse an ion channel pore or transporter pathway [Stelzl2014]_ .
Using HOLE on a PDB file
------------------------
Use the :func:``hole`` function to run `HOLE`_ on a single PDB file. For example,
the code below runs the `HOLE`_ program installed at '~/hole2/exe/hole' ::
from MDAnalysis.tests.datafiles import PDB_HOLE
from MDAnalysis.analysis import hole2
profiles = hole2.hole(PDB_HOLE, executable='~/hole2/exe/hole')
# to create a VMD surface of the pore
hole2.create_vmd_surface(filename='hole.vmd')
``profiles`` is a dictionary of HOLE profiles, indexed by the frame number. If only
a PDB file is passed to the function, there will only be one profile at frame 0.
You can visualise the pore by loading your PDB file into VMD, and in
Extensions > Tk Console, type::
source hole.vmd
You can also pass a DCD trajectory with the same atoms in the same order as
your PDB file with the ``dcd`` keyword argument. In that case, ``profiles`` will
contain multiple HOLE profiles, indexed by frame.
The HOLE program will create some output files:
* an output file (default name: hole.out)
* an sphpdb file (default name: hole.sph)
* a file of van der Waals' radii
(if not specified with ``vdwradii_file``. Default name: simple2.rad)
* a symlink of your PDB or DCD files (if the original name is too long)
* the input text (if you specify ``infile``)
By default (`keep_files=True`), these files are kept. If you would like to
delete the files after the function is wrong, set `keep_files=False`. Keep in
mind that if you delete the sphpdb file, you cannot then create a VMD surface.
Using HOLE on a trajectory
--------------------------
You can also run HOLE on a trajectory through the :class:`HoleAnalysis` class.
This behaves similarly to the ``hole`` function, although arguments such as ``cpoint``
and ``cvect`` become runtime arguments for the :meth:`~HoleAnalysis.run` function.
The class can be set-up and run like a normal MDAnalysis analysis class::
import MDAnalysis as mda
from MDAnalysis.tests.datafiles import MULTIPDB_HOLE
from MDAnalysis.analysis import hole2
u = mda.Universe(MULTIPDB_HOLE)
ha = hole2.HoleAnalysis(u, executable='~/hole2/exe/hole') as h2:
ha.run()
ha.create_vmd_surface(filename='hole.vmd')
The VMD surface created by the class updates the pore for each frame of the trajectory.
Use it as normal by loading your trajectory in VMD and sourcing the file in the Tk Console.
You can access the actual profiles generated in the ``results`` attribute::
print(ha.results.profiles)
Again, HOLE writes out files for each frame. If you would like to delete these files
after the analysis, you can call :meth:`~HoleAnalysis.delete_temporary_files`::
ha.delete_temporary_files()
Alternatively, you can use HoleAnalysis as a context manager that deletes temporary
files when you are finished with the context manager::
with hole2.HoleAnalysis(u, executable='~/hole2/exe/hole') as h2:
h2.run()
h2.create_vmd_surface()
Using HOLE with VMD
-------------------
The :program:`sos_triangle` program that is part of HOLE_ can write an input
file for VMD_ to display a triangulated surface of the pore found by
:program:`hole`. This functionality is available with the
:meth:`HoleAnalysis.create_vmd_surface` method
[#create_vmd_surface_function]_. For an input trajectory MDAnalysis writes a
*trajectory* of pore surfaces that can be animated in VMD together with the
frames from the trajectory.
Analyzing a full trajectory
~~~~~~~~~~~~~~~~~~~~~~~~~~~
To analyze a full trajectory and write pore surfaces for all frames to file
:file:`hole_surface.vmd`, use ::
import MDAnalysis as mda
from MDAnalysis.analysis import hole2
# load example trajectory MULTIPDB_HOLE
from MDAnalysis.tests.datafiles import MULTIPDB_HOLE
u = mda.Universe(MULTIPDB_HOLE)
with hole2.HoleAnalysis(u, executable='~/hole2/exe/hole') as h2:
h2.run()
h2.create_vmd_surface(filename="hole_surface.vmd")
In VMD, load your trajectory and then in the tcl console
(e.g.. :menuselection:`Extensions --> Tk Console`) load the surface
trajectory:
.. code-block:: tcl
source hole_surface.vmd
If you only want to *subsample the trajectory* and only show the surface at
specific frames then you can either load the trajectory with the same
subsampling into VMD or create a subsampled trajectory.
Creating subsampled HOLE surface
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For example, if we want to start displaying at frame 1 (i.e., skip frame 0), stop at frame 7, and
only show every other frame (step 2) then the HOLE analysis will be ::
with hole2.HoleAnalysis(u, executable='~/hole2/exe/hole') as h2:
h2.run(start=1, stop=9, step=2)
h2.create_vmd_surface(filename="hole_surface_subsampled.vmd")
The commands produce the file ``hole_surface_subsampled.vmd`` that can be loaded into VMD.
.. Note::
Python (and MDAnalysis) stop indices are *exclusive* so the parameters
``start=1``, ``stop=9``, and ``step=2`` will analyze frames 1, 3, 5, 7.
.. _Loading-a-trajectory-into-VMD-with-subsampling:
Loading a trajectory into VMD with subsampling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Load your system into VMD. This can mean to load the topology file with
:menuselection:`File --> New Molecule` and adding the trajectory with
:menuselection:`File --> Load Data into Molecule` or just :menuselection:`File
--> New Molecule`.
When loading the trajectory, subsample the frames by setting parametes in in
the :guilabel:`Frames` section. Select *First: 1*, *Last: 7*, *Stride: 2*. Then
:guilabel:`Load` everything.
.. Note::
VMD considers the stop/last frame to be *inclusive* so you need to typically
choose one less than the ``stop`` value that you selected in MDAnalysis.
Then load the surface trajectory:
.. code-block:: tcl
source hole_surface_subsampled.vmd
You should see a different surface for each frame in the trajectory. [#vmd_extra_frame]_
Creating a subsampled trajectory
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of having VMD subsample the trajectory as described in
:ref:`Loading-a-trajectory-into-VMD-with-subsampling` we can write a subsampled
trajectory to a file. Although it requires more disk space, it can be
convenient if we want to visualize the system repeatedly.
The example trajectory comes as a multi-PDB file so we need a suitable topology
file. If you already have a topology file such as a PSF, TPR, or PRMTOP file
then skip this step. We write frame 0 as a PDB :file:`frame0.pdb` (which we
will use as the topology in VMD)::
u.atoms.write("frame0.pdb")
Then write the actual trajectory in a convenient format such as TRR (or
DCD). Note that we apply the same slicing (``start=1``, ``stop=9``, ``step=2``)
to the trajectory itself and then use it as the value for the ``frames``
parameter of :meth:`AtomGroup.write<MDAnalysis.core.groups.AtomGroup.write>`
method::
u.atoms.write("subsampled.trr", frames=u.trajectory[1:9:2])
This command creates the subsampled trajectory file :file:`subsampled.trr` in
TRR format.
In VMD we load the topology and the trajectory and then load the surface. In
our example we have a PDB file (:file:`frame0.pdb`) as topology so we need to
remove the first frame [#vmd_extra_frame]_ (skip the "trim" step below if you
are using a true topology file such as PSF, TPR, or PRMTOP). To keep this
example compact, we are using the tcl command line interface in VMD_
(:menuselection:`Extensions --> Tk Console`) for loading and trimming the
trajectory; you can use the menu commands if you prefer.
.. code-block:: tcl
# load topology and subsampled trajectory
mol load pdb frame0.pdb trr subsampled.trr
# trim first frame (frame0) -- SKIP if using PSF, TPR, PRMTOP
animate delete beg 0 end 0
# load the HOLE surface trajectory
source hole_surface_subsampled.vmd
You can now animate your molecule together with the surface and render it.
.. _HOLE: http://www.holeprogram.org
.. _VMD: https://www.ks.uiuc.edu/Research/vmd/
Functions and classes
---------------------
.. autofunction:: hole
.. autoclass:: HoleAnalysis
:members:
References
----------
.. [Smart1993] O.S. Smart, J.M. Goodfellow and B.A. Wallace.
The Pore Dimensions of Gramicidin A. Biophysical Journal 65:2455-2460, 1993.
DOI: 10.1016/S0006-3495(93)81293-1
.. [Smart1996] O.S. Smart, J.G. Neduvelil, X. Wang, B.A. Wallace, and M.S.P. Sansom.
HOLE: A program for the analysis of the pore dimensions of ion channel
structural models. J.Mol.Graph., 14:354–360, 1996.
DOI: 10.1016/S0263-7855(97)00009-X
URL http://www.holeprogram.org/
.. [Stelzl2014] L. S. Stelzl, P. W. Fowler, M. S. P. Sansom, and O. Beckstein.
Flexible gates generate occluded intermediates in the transport cycle
of LacY. J Mol Biol, 426:735–751, 2014.
DOI: 10.1016/j.jmb.2013.10.024
.. Footnotes
.. [#create_vmd_surface_function] If you use the :class:`hole` class to run
:program:`hole` on a single PDB file then you can use
:func:`MDAnalysis.analysis.hole2.utils.create_vmd_surface`
function to manually run :program:`sph_process` and
:program:`sos_triangle` on the output files andcr eate a surface
file.
.. [#vmd_extra_frame] If you loaded your system in VMD_ from separate topology
and trajectory files and the topology file contained coordinates
(such as a PDB or GRO) file then your trajectory will have an
extra initial frame containing the coordinates from your topology
file. Delete the initial frame with :menuselection:`Molecule -->
Delete Frames` by setting *First* to 0 and *Last* to 0 and
selecting :guilabel:`Delete`.
.. [#HOLEDCD] PDB files are not the only files that :program:`hole` can
read. In principle, it is also able to read CHARMM DCD
trajectories and generate a hole profile for each frame. However,
native support for DCD in :program:`hole` is patchy and not every
DCD is recognized. In particular, At the moment, DCDs generated
with MDAnalysis are not accepted by HOLE. To overcome this
PDB / DCD limitation, use :class:`HoleAnalysis` which creates
temporary PDB files for each frame of a
:class:`~MDAnalysis.core.universe.Universe` or
:class:`~MDAnalysis.core.universe.AtomGroup` and runs
:func:``hole`` on each of them.
"""
import os
import errno
import tempfile
import textwrap
import logging
import itertools
import warnings
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import OrderedDict
from ...exceptions import ApplicationError
from ..base import AnalysisBase
from ...lib import util
from .utils import (check_and_fix_long_filename, write_simplerad2,
set_up_hole_input, run_hole, collect_hole,
create_vmd_surface)
from .templates import (hole_input, hole_lines, vmd_script_array,
vmd_script_function, exe_err,
IGNORE_RESIDUES)
logger = logging.getLogger(__name__)
[docs]def hole(pdbfile,
infile_text=None,
infile=None,
outfile='hole.out',
sphpdb_file='hole.sph',
vdwradii_file=None,
executable='hole',
tmpdir=os.path.curdir,
sample=0.2,
end_radius=22.0,
cpoint=None,
cvect=None,
random_seed=None,
ignore_residues=IGNORE_RESIDUES,
output_level=0,
dcd=None,
dcd_iniskip=0,
dcd_step=1,
keep_files=True):
r"""Run :program:`hole` on a single frame or a DCD trajectory.
:program:`hole` is part of the HOLE_ suite of programs. It is used to
analyze channels and cavities in proteins, especially ion channels.
Only a subset of all `HOLE control parameters <http://www.holeprogram.org/doc/old/hole_d03.html>`_
is supported and can be set with keyword arguments.
Parameters
----------
pdbfile : str
The `filename` is used as input for HOLE in the "COORD" card of the
input file. It specifies the name of a PDB coordinate file to be
used. This must be in Brookhaven protein databank format or
something closely approximating this. Both ATOM and HETATM records
are read.
infile_text: str, optional
HOLE input text or template. If set to ``None``, the function will
create the input text from the other parameters.
infile: str, optional
File to write the HOLE input text for later inspection. If set to
``None``, the input text is not written out.
outfile : str, optional
file name of the file collecting HOLE's output (which can be
parsed using :meth:`collect_hole(outfile)`.
sphpdb_file : str, optional
path to the HOLE sph file, a PDB-like file containing the
coordinates of the pore centers.
The coordinates are set to the sphere centres and the occupancies
are the sphere radii. All centres are assigned the atom name QSS and
residue name SPH and the residue number is set to the storage
number of the centre. In VMD, sph
objects are best displayed as "Points". Displaying .sph objects
rather than rendered or dot surfaces can be useful to analyze the
distance of particular atoms from the sphere-centre line.
.sph files can be used to produce molecular graphical
output from a hole run, by using the
:program:`sph_process` program to read the .sph file.
vdwradii_file: str, optional
path to the file specifying van der Waals radii for each atom. If
set to ``None``, then a set of default radii,
:data:`SIMPLE2_RAD`, is used (an extension of ``simple.rad`` from
the HOLE distribution).
executable: str, optional
Path to the :program:`hole` executable.
(e.g. ``~/hole2/exe/hole``). If
:program:`hole` is found on the :envvar:`PATH`, then the bare
executable name is sufficient.
tmpdir: str, optional
The temporary directory that files can be symlinked to, to shorten
the path name. HOLE can only read filenames up to a certain length.
sample : float, optional
distance of sample points in Å.
Specifies the distance between the planes used in the HOLE
procedure. The default value should be reasonable for most
purposes. However, if you wish to visualize a very tight
constriction then specify a smaller value.
This value determines how many points in the pore profile are
calculated.
end_radius : float, optional
Radius in Å, which is considered to be the end of the pore. This
keyword can be used to specify the radius above which the
program regards a result as indicating that the end of the pore
has been reached. This may need to be increased for large channels,
or reduced for small channels.
cpoint : array_like, 'center_of_geometry' or None, optional
coordinates of a point inside the pore, e.g. ``[12.3, 0.7,
18.55]``. If set to ``None`` (the default) then HOLE's own search
algorithm is used.
``cpoint`` specifies a point which lies within the channel. For
simple channels (e.g. gramicidin), results do not show great
sensitivity to the exact point taken. An easy way to produce an
initial point is to use molecular graphics to find two atoms which
lie either side of the pore and to average their coordinates. Or
if the channel structure contains water molecules or counter ions
then take the coordinates of one of these (and use the
``ignore_residues`` keyword to ignore them in the pore radius
calculation).
If this card is not specified, then HOLE (from version 2.2)
attempts to guess where the channel will be. The procedure
assumes the channel is reasonably symmetric. The initial guess on
cpoint will be the centroid of all alpha carbon atoms (name 'CA'
in pdb file). This is then refined by a crude grid search up to 5
Å from the original position. This procedure works most of the
time but is far from infallible — results should be
carefully checked (with molecular graphics) if it is used.
cvect : array_like, optional
Search direction, should be parallel to the pore axis,
e.g. ``[0,0,1]`` for the z-axis.
If this keyword is ``None`` (the default), then HOLE attempts to guess
where the channel will be. The procedure assumes that the channel is
reasonably symmetric. The guess will be either along the X axis
(1,0,0), Y axis (0,1,0) or Z axis (0,0,1). If the structure is not
aligned on one of these axis the results will clearly be
approximate. If a guess is used then results should be carefully
checked.
random_seed : int, optional
integer number to start the random number generator.
By default,
:program:`hole` will use the time of the day.
For reproducible runs (e.g., for testing) set ``random_seed``
to an integer.
ignore_residues : array_like, optional
sequence of three-letter residues that are not taken into
account during the calculation; wildcards are *not*
supported. Note that all residues must have 3 letters. Pad
with space on the right-hand side if necessary.
output_level : int, optional
Determines the output of output in the ``outfile``.
For automated processing, this must be < 3.
0: Full text output,
1: All text output given except "run in progress" (i.e.,
detailed contemporary description of what HOLE is doing).
2: Ditto plus no graph type output - only leaving minimum
radius and conductance calculations.
3: All text output other than input card mirroring and error messages
turned off.
dcd : str, optional
File name of CHARMM-style DCD trajectory (must be supplied together with a
matching PDB file `filename`) and then HOLE runs its analysis on
each frame. HOLE can *not* read DCD trajectories written by MDAnalysis,
which are NAMD-style (see Notes). Note that structural parameters
determined for each individual structure are written in a tagged
format so that it is possible to extract the information from the text
output file using a :program:`grep` command. The reading of the file
can be controlled by the ``dcd_step`` keyword and/or setting
``dcd_iniskip`` to the number of frames to be skipped
initially.
dcd_step : int, optional
step size for going through the trajectory (skips ``dcd_step-1``
frames).
keep_files : bool, optional
Whether to keep the HOLE output files and possible temporary
symlinks after running the function.
Returns
-------
dict
A dictionary of :class:`numpy.recarray`\ s, indexed by frame.
Notes
-----
- HOLE is very picky and does not read all DCD-like formats [#HOLEDCD]_.
If in doubt, look into the `outfile` for error diagnostics.
.. versionadded:: 1.0
"""
if output_level > 3:
msg = 'output_level ({}) needs to be < 3 in order to extract a HOLE profile!'
warnings.warn(msg.format(output_level))
# get executable
exe = util.which(executable)
if exe is None:
raise OSError(errno.ENOENT, exe_err.format(name=executable,
kw='executable'))
# get temp files
tmp_files = [outfile, sphpdb_file]
short_filename = check_and_fix_long_filename(pdbfile, tmpdir=tmpdir)
if os.path.islink(short_filename):
tmp_files.append(short_filename)
if dcd is not None:
dcd = check_and_fix_long_filename(dcd, tmpdir=tmpdir)
if os.path.islink(dcd):
tmp_files.append(dcd)
if vdwradii_file is not None:
vdwradii_file = check_and_fix_long_filename(vdwradii_file,
tmpdir=tmpdir)
else:
vdwradii_file = write_simplerad2()
tmp_files.append(vdwradii_file)
infile_text = set_up_hole_input(short_filename,
infile_text=infile_text,
infile=infile,
sphpdb_file=sphpdb_file,
vdwradii_file=vdwradii_file,
tmpdir=tmpdir, sample=sample,
end_radius=end_radius,
cpoint=cpoint, cvect=cvect,
random_seed=random_seed,
ignore_residues=ignore_residues,
output_level=output_level,
dcd=dcd,
dcd_iniskip=dcd_iniskip,
dcd_step=dcd_step-1)
run_hole(outfile=outfile, infile_text=infile_text, executable=exe)
recarrays = collect_hole(outfile=outfile)
if not keep_files:
for file in tmp_files:
try:
os.unlink(file)
except OSError:
pass
return recarrays
[docs]class HoleAnalysis(AnalysisBase):
r"""
Run :program:`hole` on a trajectory.
:program:`hole` is part of the HOLE_ suite of programs. It is used to
analyze channels and cavities in proteins, especially ion channels.
Only a subset of all `HOLE control parameters <http://www.holeprogram.org/doc/old/hole_d03.html>`_
is supported and can be set with keyword arguments.
This class creates temporary PDB files for each frame and runs HOLE on
the frame. It can be used normally, or as a context manager. If used as a
context manager, the class will try to delete any temporary files created
by HOLE, e.g. sphpdb files and logfiles. ::
with hole2.HoleAnalysis(u, executable='~/hole2/exe/hole') as h2:
h2.run()
h2.create_vmd_surface()
Parameters
----------
universe : Universe or AtomGroup
The Universe or AtomGroup to apply the analysis to.
select : string, optional
The selection string to create an atom selection that the HOLE
analysis is applied to.
vdwradii_file : str, optional
path to the file specifying van der Waals radii for each atom. If
set to ``None``, then a set of default radii,
:data:`SIMPLE2_RAD`, is used (an extension of ``simple.rad`` from
the HOLE distribution).
executable : str, optional
Path to the :program:`hole` executable.
(e.g. ``~/hole2/exe/hole``). If
:program:`hole` is found on the :envvar:`PATH`, then the bare
executable name is sufficient.
tmpdir : str, optional
The temporary directory that files can be symlinked to, to shorten
the path name. HOLE can only read filenames up to a certain length.
cpoint : array_like, 'center_of_geometry' or None, optional
coordinates of a point inside the pore, e.g. ``[12.3, 0.7,
18.55]``. If set to ``None`` (the default) then HOLE's own search
algorithm is used.
``cpoint`` specifies a point which lies within the channel. For
simple channels (e.g. gramicidin), results do not show great
sensitivity to the exact point taken. An easy way to produce an
initial point is to use molecular graphics to find two atoms which
lie either side of the pore and to average their coordinates. Or
if the channel structure contains water molecules or counter ions
then take the coordinates of one of these (and use the
``ignore_residues`` keyword to ignore them in the pore radius
calculation).
If this card is not specified, then HOLE (from version 2.2)
attempts to guess where the channel will be. The procedure
assumes the channel is reasonably symmetric. The initial guess on
cpoint will be the centroid of all alpha carbon atoms (name 'CA'
in pdb file). This is then refined by a crude grid search up to 5
Å from the original position. This procedure works most of the
time but is far from infallible — results should be
carefully checked (with molecular graphics) if it is used.
cvect : array_like, optional
Search direction, should be parallel to the pore axis,
e.g. ``[0,0,1]`` for the z-axis.
If this keyword is ``None`` (the default), then HOLE attempts to guess
where the channel will be. The procedure assumes that the channel is
reasonably symmetric. The guess will be either along the X axis
(1,0,0), Y axis (0,1,0) or Z axis (0,0,1). If the structure is not
aligned on one of these axis the results will clearly be
approximate. If a guess is used then results should be carefully
checked.
sample : float, optional
distance of sample points in Å.
Specifies the distance between the planes used in the HOLE
procedure. The default value should be reasonable for most
purposes. However, if you wish to visualize a very tight
constriction then specify a smaller value.
This value determines how many points in the pore profile are
calculated.
end_radius : float, optional
Radius in Å, which is considered to be the end of the pore. This
keyword can be used to specify the radius above which the
program regards a result as indicating that the end of the pore
has been reached. This may need to be increased for large channels,
or reduced for small channels.
output_level : int, optional
Determines the output of output in the ``outfile``.
For automated processing, this must be < 3.
0: Full text output,
1: All text output given except "run in progress" (i.e.,
detailed contemporary description of what HOLE is doing).
2: Ditto plus no graph type output - only leaving minimum
radius and conductance calculations.
3: All text output other than input card mirroring and error messages
turned off.
ignore_residues : array_like, optional
sequence of three-letter residues that are not taken into
account during the calculation; wildcards are *not*
supported. Note that all residues must have 3 letters. Pad
with space on the right-hand side if necessary.
prefix : str, optional
Prefix for HOLE output files.
write_input_files : bool, optional
Whether to write out the input HOLE text as files.
Files are called `hole.inp`.
Attributes
----------
results.sphpdbs: numpy.ndarray
Array of sphpdb filenames
.. versionadded:: 2.0.0
results.outfiles: numpy.ndarray
Arrau of output filenames
.. versionadded:: 2.0.0
results.profiles: dict
Profiles generated by HOLE2.
A dictionary of :class:`numpy.recarray`\ s, indexed by frame.
.. versionadded:: 2.0.0
sphpdbs: numpy.ndarray
Alias of :attr:`results.sphpdbs`
.. deprecated:: 2.0.0
This will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.sphpdbs` instead.
outfiles: numpy.ndarray
Alias of :attr:`results.outfiles`
.. deprecated:: 2.0.0
This will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.outfiles` instead.
profiles: dict
Alias of :attr:`results.profiles`
.. deprecated:: 2.0.0
This will be removed in MDAnalysis 3.0.0. Please use
:attr:`results.profiles` instead.
.. versionadded:: 1.0
.. versionchanged:: 2.0.0
:attr:`sphpdbs`, :attr:`outfiles` and :attr:`profiles `
are now stored in a :class:`MDAnalysis.analysis.base.Results`
instance.
"""
input_file = '{prefix}hole{i:03d}.inp'
output_file = '{prefix}hole{i:03d}.out'
sphpdb_file = '{prefix}hole{i:03d}.sph'
input_file = '{prefix}hole{i:03d}.inp'
output_file = '{prefix}hole{i:03d}.out'
sphpdb_file = '{prefix}hole{i:03d}.sph'
hole_header = textwrap.dedent("""
! Input file for Oliver Smart's HOLE program
! written by MDAnalysis.analysis.hole2.HoleAnalysis
! for a Universe
! u = mda.Universe({}
! )
! Frame {{i}}
""")
hole_body = textwrap.dedent("""
COORD {{coordinates}}
RADIUS {radius}
SPHPDB {{sphpdb}}
SAMPLE {sample:f}
ENDRAD {end_radius:f}
IGNORE {ignore}
SHORTO {output_level:d}
""")
_guess_cpoint = False
def __init__(self, universe,
select='protein',
verbose=False,
ignore_residues=IGNORE_RESIDUES,
vdwradii_file=None,
executable='hole',
sos_triangle='sos_triangle',
sph_process='sph_process',
tmpdir=os.path.curdir,
cpoint=None,
cvect=None,
sample=0.2,
end_radius=22,
output_level=0,
prefix=None,
write_input_files=False):
super(HoleAnalysis, self).__init__(universe.universe.trajectory,
verbose=verbose)
if output_level > 3:
msg = 'output_level ({}) needs to be < 3 in order to extract a HOLE profile!'
warnings.warn(msg.format(output_level))
if prefix is None:
prefix = ''
if isinstance(cpoint, str):
if 'geometry' in cpoint.lower():
self._guess_cpoint = True
self.cpoint = '{cpoint[0]:.10f} {cpoint[1]:.10f} {cpoint[2]:.10f}'
else:
self._guess_cpoint = False
self.cpoint = cpoint
self.prefix = prefix
self.cvect = cvect
self.sample = sample
self.end_radius = end_radius
self.output_level = output_level
self.write_input_files = write_input_files
self.select = select
self.ag = universe.select_atoms(select, updating=True)
self.universe = universe
self.tmpdir = tmpdir
self.ignore_residues = ignore_residues
# --- finding executables ----
hole = util.which(executable)
if hole is None:
raise OSError(errno.ENOENT, exe_err.format(name=executable,
kw='executable'))
self.base_path = os.path.dirname(hole)
sos_triangle_path = util.which(sos_triangle)
if sos_triangle_path is None:
path = os.path.join(self.base_path, sos_triangle)
sos_triangle_path = util.which(path)
if sos_triangle_path is None:
raise OSError(errno.ENOENT, exe_err.format(name=sos_triangle,
kw='sos_triangle'))
sph_process_path = util.which(sph_process)
if sph_process_path is None:
path = os.path.join(self.base_path, sph_process)
sph_process_path = util.which(path)
if sph_process_path is None:
raise OSError(errno.ENOENT, exe_err.format(name=sph_process,
kw='sph_process'))
self.exe = {
'hole': hole,
'sos_triangle': sos_triangle_path,
'sph_process': sph_process_path
}
# --- setting up temp files ----
self.tmp_files = []
if vdwradii_file is not None:
self.vdwradii_file = check_and_fix_long_filename(vdwradii_file,
tmpdir=self.tmpdir)
if os.path.islink(self.vdwradii_file):
self.tmp_files.append(self.vdwradii_file)
else:
self.vdwradii_file = write_simplerad2()
self.tmp_files.append(self.vdwradii_file)
# --- setting up input header ----
filenames = [universe.filename]
try:
filenames.extend(universe.trajectory.filenames)
except AttributeError:
filenames.append(universe.trajectory.filename)
hole_filenames = '\n! '.join(filenames)
self._input_header = self.hole_header.format(hole_filenames)
[docs] def run(self, start=None, stop=None, step=None, verbose=None,
random_seed=None):
"""
Perform the calculation
Parameters
----------
start : int, optional
start frame of analysis
stop : int, optional
stop frame of analysis
step : int, optional
number of frames to skip between each analysed frame
verbose : bool, optional
Turn on verbosity
random_seed : int, optional
integer number to start the random number generator.
By default,
:program:`hole` will use the time of the day.
For reproducible runs (e.g., for testing) set ``random_seed``
to an integer.
"""
self.random_seed = random_seed
return super(HoleAnalysis, self).run(start=start, stop=stop,
step=step, verbose=verbose)
@property
def sphpdbs(self):
wmsg = ("The `sphpdbs` attribute was deprecated in "
"MDAnalysis 2.0.0 and will be removed in MDAnalysis 3.0.0. "
"Please use `results.sphpdbs` instead.")
warnings.warn(wmsg, DeprecationWarning)
return self.results.sphpdbs
@property
def outfiles(self):
wmsg = ("The `outfiles` attribute was deprecated in "
"MDAnalysis 2.0.0 and will be removed in MDAnalysis 3.0.0. "
"Please use `results.outfiles` instead.")
warnings.warn(wmsg, DeprecationWarning)
return self.results.outfiles
@property
def profiles(self):
wmsg = ("The `profiles` attribute was deprecated in "
"MDAnalysis 2.0.0 and will be removed in MDAnalysis 3.0.0. "
"Please use `results.profiles` instead.")
warnings.warn(wmsg, DeprecationWarning)
return self.results.profiles
def _prepare(self):
"""Set up containers and generate input file text"""
# set up containers
self.results.sphpdbs = np.zeros(self.n_frames, dtype=object)
self.results.outfiles = np.zeros(self.n_frames, dtype=object)
self.results.profiles = {}
# generate input file
body = set_up_hole_input('',
infile_text=self.hole_body,
infile=None,
vdwradii_file=self.vdwradii_file,
tmpdir=self.tmpdir,
sample=self.sample,
end_radius=self.end_radius,
cpoint=self.cpoint,
cvect=self.cvect,
random_seed=self.random_seed,
ignore_residues=self.ignore_residues,
output_level=self.output_level,
dcd=None)
self.infile_text = self._input_header + body
[docs] def guess_cpoint(self):
"""Guess a point inside the pore.
This method simply uses the center of geometry of the selection as a
guess.
Returns
-------
float:
center of geometry of selected AtomGroup
"""
return self.ag.center_of_geometry()
def _single_frame(self):
"""Run HOLE analysis and collect profiles"""
# set up files
frame = self._ts.frame
i = self._frame_index
outfile = self.output_file.format(prefix=self.prefix, i=frame)
sphpdb = self.sphpdb_file.format(prefix=self.prefix, i=frame)
self.results.sphpdbs[i] = sphpdb
self.results.outfiles[i] = outfile
if outfile not in self.tmp_files:
self.tmp_files.append(outfile)
if sphpdb not in self.tmp_files:
self.tmp_files.append(sphpdb)
else:
self.tmp_files.append(sphpdb + '.old')
# temp pdb
logger.info('HOLE analysis frame {}'.format(frame))
fd, pdbfile = tempfile.mkstemp(suffix='.pdb')
os.close(fd) # close immediately (Issue 129)
# get infile text
fmt_kwargs = {'i': frame, 'coordinates': pdbfile, 'sphpdb': sphpdb}
if self._guess_cpoint:
fmt_kwargs['cpoint'] = self.guess_cpoint()
infile_text = self.infile_text.format(**fmt_kwargs)
if self.write_input_files:
infile = self.input_file.format(prefix=self.prefix, i=frame)
with open(infile, 'w') as f:
f.write(infile_text)
try:
self.ag.write(pdbfile)
run_hole(outfile=outfile, infile_text=infile_text,
executable=self.exe['hole'])
finally:
try:
os.unlink(pdbfile)
except OSError:
pass
recarrays = collect_hole(outfile=outfile)
try:
self.results.profiles[frame] = recarrays[0]
except KeyError:
msg = 'No profile found in HOLE output. Output level: {}'
logger.info(msg.format(self.output_level))
[docs] def create_vmd_surface(self, filename='hole.vmd', dot_density=15,
no_water_color='red', one_water_color='green',
double_water_color='blue'):
"""Process HOLE output to create a smooth pore surface suitable for VMD.
Takes the ``sphpdb`` file for each frame and feeds it to `sph_process
<http://www.holeprogram.org/doc/old/hole_d04.html#sph_process>`_ and
`sos_triangle
<http://www.holeprogram.org/doc/old/hole_d04.html#sos_triangle>`_ as
described under `Visualization of HOLE results
<http://www.holeprogram.org/doc/index.html>`_.
Load the output file *filename* into VMD in :menuselection:`Extensions
--> Tk Console` ::
source hole.vmd
The level of detail is determined by ``dot_density``.
The surface will be colored by ``no_water_color``, ``one_water_color``, and
``double_water_color``. You can change these in the
Tk Console::
set no_water_color blue
Parameters
----------
filename: str, optional
file to write the pore surfaces to.
dot_density: int, optional
density of facets for generating a 3D pore representation.
The number controls the density of dots that will be used.
A sphere of dots is placed on each centre determined in the
Monte Carlo procedure. The actual number of dots written is
controlled by ``dot_density`` and the ``sample`` level of the
original analysis. ``dot_density`` should be set between 5
(few dots per sphere) and 35 (many dots per sphere).
no_water_color: str, optional
Color of the surface where the pore radius is too tight for a
water molecule.
one_water_color: str, optional
Color of the surface where the pore can fit one water molecule.
double_water_color: str, optional
Color of the surface where the radius is at least double the
minimum radius for one water molecule.
Returns
-------
str
``filename`` with the pore surfaces.
"""
if not np.any(self.results.get("sphpdbs", [])):
raise ValueError('No sphpdb files to read. Try calling run()')
frames = []
for i, frame in enumerate(self.frames):
sphpdb = self.results.sphpdbs[i]
tmp_tri = create_vmd_surface(sphpdb=sphpdb,
sph_process=self.exe['sph_process'],
sos_triangle=self.exe['sos_triangle'],
dot_density=dot_density)
shapes = [[], [], []]
with open(tmp_tri) as f:
for line in f:
if line.startswith('draw color'):
color = line.split()[-1].lower()
if color == 'red':
dest = shapes[0]
elif color == 'green':
dest = shapes[1]
elif color == 'blue':
dest = shapes[2]
else:
msg = 'Encountered unknown color {}'
raise ValueError(msg.format(color))
if line.startswith('draw trinorm'):
line = line.strip('draw trinorm').strip()
dest.append('{{ {} }}'.format(line))
try:
os.unlink(tmp_tri)
except OSError:
pass
tri = '{ { ' + ' } { '.join(list(map(' '.join, shapes))) + ' } }'
frames.append(f'set triangles({i}) ' + tri)
trinorms = '\n'.join(frames)
vmd_1 = vmd_script_array.format(no_water_color=no_water_color,
one_water_color=one_water_color,
double_water_color=double_water_color)
vmd_text = vmd_1 + trinorms + vmd_script_function
with open(filename, 'w') as f:
f.write(vmd_text)
return filename
[docs] def min_radius(self):
"""Return the minimum radius over all profiles as a function of q"""
profiles = self.results.get("profiles")
if not profiles:
raise ValueError('No profiles available. Try calling run()')
return np.array([[q, p.radius.min()] for q, p in profiles.items()])
[docs] def delete_temporary_files(self):
"""Delete temporary files"""
for f in self.tmp_files:
try:
os.unlink(f)
except OSError:
pass
self.tmp_files = []
self.results.outfiles = []
self.results.sphpdbs = []
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Delete temporary files on exit"""
self.delete_temporary_files()
def _process_plot_kwargs(self, frames=None,
color=None, cmap='viridis',
linestyle='-'):
"""Process the colors and linestyles for plotting
Parameters
----------
frames : array-like, optional
Frames to plot. If ``None``, plots all of them.
color : str or array-like, optional
Color or colors for the plot. If ``None``, colors are
drawn from ``cmap``.
cmap : str, optional
color map to make colors for the plot if ``color`` is
not given. Names should be from the ``matplotlib.pyplot.cm``
module.
linestyle : str or array-like, optional
Line style for the plot.
Returns
-------
(array-like, array-like, array-like)
frames, colors, linestyles
"""
if frames is None:
frames = self.frames
else:
frames = util.asiterable(frames)
if color is None:
colormap = plt.cm.get_cmap(cmap)
norm = matplotlib.colors.Normalize(vmin=min(frames),
vmax=max(frames))
colors = colormap(norm(frames))
else:
colors = itertools.cycle(util.asiterable(color))
linestyles = itertools.cycle(util.asiterable(linestyle))
return frames, colors, linestyles
[docs] def plot(self, frames=None,
color=None, cmap='viridis',
linestyle='-', y_shift=0.0,
label=True, ax=None,
legend_loc='best', **kwargs):
r"""Plot HOLE profiles :math:`R(\zeta)` in a 1D graph.
Lines are colored according to the specified ``color`` or
drawn from the color map ``cmap``. One line is
plotted for each trajectory frame.
Parameters
----------
frames: array-like, optional
Frames to plot. If ``None``, plots all of them.
color: str or array-like, optional
Color or colors for the plot. If ``None``, colors are
drawn from ``cmap``.
cmap: str, optional
color map to make colors for the plot if ``color`` is
not given. Names should be from the ``matplotlib.pyplot.cm``
module.
linestyle: str or array-like, optional
Line style for the plot.
y_shift : float, optional
displace each :math:`R(\zeta)` profile by ``y_shift`` in the
:math:`y`-direction for clearer visualization.
label : bool or string, optional
If ``False`` then no legend is
displayed.
ax : :class:`matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
legend_loc : str, optional
Location of the legend.
kwargs : `**kwargs`
All other `kwargs` are passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
ax : :class:`~matplotlib.axes.Axes`
Axes with the plot, either `ax` or the current axes.
"""
if not self.results.get("profiles"):
raise ValueError('No profiles available. Try calling run()')
if ax is None:
fig, ax = plt.subplots()
fcl = self._process_plot_kwargs(frames=frames, color=color,
cmap=cmap, linestyle=linestyle)
for i, (frame, c, ls) in enumerate(zip(*fcl)):
profile = self.results.profiles[frame]
dy = i*y_shift
ax.plot(profile.rxn_coord, profile.radius+dy, color=c,
linestyle=ls, zorder=-frame, label=str(frame),
**kwargs)
ax.set_xlabel(r"Pore coordinate $\zeta$ ($\AA$)")
ax.set_ylabel(r"HOLE radius $R$ ($\AA$)")
if label == True:
ax.legend(loc=legend_loc)
return ax
[docs] def plot3D(self, frames=None,
color=None, cmap='viridis',
linestyle='-', ax=None, r_max=None,
ylabel='Frames', **kwargs):
r"""Stacked 3D graph of profiles :math:`R(\zeta)`.
Lines are colored according to the specified ``color`` or
drawn from the color map ``cmap``. One line is
plotted for each trajectory frame.
Parameters
----------
frames : array-like, optional
Frames to plot. If ``None``, plots all of them.
color : str or array-like, optional
Color or colors for the plot. If ``None``, colors are
drawn from ``cmap``.
cmap : str, optional
color map to make colors for the plot if ``color`` is
not given. Names should be from the ``matplotlib.pyplot.cm``
module.
linestyle : str or array-like, optional
Line style for the plot.
r_max : float, optional
only display radii up to ``r_max``. If ``None``, all radii are
plotted.
ax : :class:`matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
ylabel : str, optional
Y-axis label.
**kwargs :
All other `kwargs` are passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
ax : :class:`~mpl_toolkits.mplot3d.Axes3D`
Axes with the plot, either `ax` or the current axes.
"""
if not self.results.get("profiles"):
raise ValueError('No profiles available. Try calling run()')
from mpl_toolkits.mplot3d import Axes3D
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
fcl = self._process_plot_kwargs(frames=frames,
color=color, cmap=cmap,
linestyle=linestyle)
for frame, c, ls in zip(*fcl):
profile = self.results.profiles[frame]
if r_max is None:
radius = profile.radius
rxn_coord = profile.rxn_coord
else:
# does not seem to work with masked arrays but with nan hack!
# http://stackoverflow.com/questions/4913306/python-matplotlib-mplot3d-how-do-i-set-a-maximum-value-for-the-z-axis
rxn_coord = profile.rxn_coord
radius = profile.radius.copy()
radius[radius > r_max] = np.nan
ax.plot(rxn_coord, frame*np.ones_like(rxn_coord), radius,
color=c, linestyle=ls, zorder=-frame, label=str(frame),
**kwargs)
ax.set_xlabel(r"Pore coordinate $\zeta$ ($\AA$)")
ax.set_ylabel(ylabel)
ax.set_zlabel(r"HOLE radius $R$ ($\AA$)")
plt.tight_layout()
return ax
[docs] def over_order_parameters(self, order_parameters, frames=None):
"""Get HOLE profiles sorted over order parameters ``order_parameters``.
Parameters
----------
order_parameters : array-like or string
Sequence or text file containing order parameters (float
numbers) corresponding to the frames in the trajectory. Must
be same length as trajectory.
frames : array-like, optional
Selected frames to return. If ``None``, returns all of them.
Returns
-------
collections.OrderedDict
sorted dictionary of {order_parameter:profile}
"""
if not self.results.get("profiles"):
raise ValueError('No profiles available. Try calling run()')
if isinstance(order_parameters, str):
try:
order_parameters = np.loadtxt(order_parameters)
except IOError:
raise ValueError('Data file not found: {}'.format(order_parameters))
except (ValueError, TypeError):
msg = ('Could not parse given file: {}. '
'`order_parameters` must be array-like '
'or a filename with array data '
'that can be read by np.loadtxt')
raise ValueError(msg.format(order_parameters))
order_parameters = np.asarray(order_parameters)
if len(order_parameters) != len(self._trajectory):
msg = ('The number of order parameters ({}) must match the '
'length of the trajectory ({} frames)')
raise ValueError(msg.format(len(order_parameters),
len(self._trajectory)))
if frames is None:
frames = self.frames
else:
frames = np.asarray(util.asiterable(frames))
idx = np.argsort(order_parameters[frames])
sorted_frames = frames[idx]
profiles = OrderedDict()
for frame in sorted_frames:
profiles[order_parameters[frame]] = self.results.profiles[frame]
return profiles
[docs] def plot_order_parameters(self, order_parameters,
aggregator=min,
frames=None,
color='blue',
linestyle='-', ax=None,
ylabel=r'Minimum HOLE pore radius $r$ ($\AA$)',
xlabel='Order parameter',
**kwargs):
r"""Plot HOLE radii over order parameters. This function needs
an ``aggregator`` function to reduce the ``radius`` array to a
single value, e.g. ``min``, ``max``, or ``np.mean``.
Parameters
----------
order_parameters : array-like or string
Sequence or text file containing order parameters (float
numbers) corresponding to the frames in the trajectory. Must
be same length as trajectory.
aggregator : callable, optional
Function applied to the radius array of each profile to
reduce it to one representative value.
frames : array-like, optional
Frames to plot. If ``None``, plots all of them.
color : str or array-like, optional
Color for the plot.
linestyle : str or array-like, optional
Line style for the plot.
ax : :class:`matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
xlabel : str, optional
X-axis label.
ylabel : str, optional
Y-axis label.
**kwargs :
All other `kwargs` are passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
ax : :class:`~matplotlib.axes.Axes`
Axes with the plot, either `ax` or the current axes.
"""
op_profiles = self.over_order_parameters(order_parameters,
frames=frames)
if ax is None:
fig, ax = plt.subplots()
data = [[x, aggregator(p.radius)] for x, p in op_profiles.items()]
arr = np.array(data)
ax.plot(arr[:, 0], arr[:, 1], color=color, linestyle=linestyle)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
[docs] def gather(self, frames=None, flat=False):
"""Gather the fields of each profile recarray together.
Parameters
----------
frames : int or iterable of ints, optional
Profiles to include by frame. If ``None``, includes
all frames.
flat : bool, optional
Whether to flatten the list of field arrays into a
single array.
Returns
-------
dict
dictionary of fields
"""
if frames is None:
frames = self.frames
frames = util.asiterable(frames)
profiles = [self.results.profiles[k] for k in frames]
rxncoords = [p.rxn_coord for p in profiles]
radii = [p.radius for p in profiles]
cen_line_Ds = [p.cen_line_D for p in profiles]
if flat:
rxncoords = np.concatenate(rxncoords)
radii = np.concatenate(radii)
cen_line_Ds = np.concatenate(cen_line_Ds)
dct = {'rxn_coord': rxncoords,
'radius': radii,
'cen_line_D': cen_line_Ds}
return dct
[docs] def bin_radii(self, frames=None, bins=100, range=None):
"""Collects the pore radii into bins by reaction coordinate.
Parameters
----------
frames : int or iterable of ints, optional
Profiles to include by frame. If ``None``, includes
all frames.
bins : int or iterable of edges, optional
If bins is an int, it defines the number of equal-width bins in the given
range. If bins is a sequence, it defines a monotonically increasing array of
bin edges, including the rightmost edge, allowing for non-uniform bin widths.
range : (float, float), optional
The lower and upper range of the bins.
If not provided, ``range`` is simply ``(a.min(), a.max())``,
where ``a`` is the array of reaction coordinates.
Values outside the range are ignored. The first element of the range must be
less than or equal to the second.
Returns
-------
list of arrays of floats
List of radii present in each bin
array of (float, float)
Edges of each bin
"""
agg = self.gather(frames=frames, flat=True)
coords = agg['rxn_coord']
if not util.iterable(bins):
if range is None:
range = (coords.min(), coords.max())
xmin, xmax = range
if xmin == xmax:
xmin -= 0.5
xmax += 0.5
bins = np.linspace(xmin, xmax, bins+1, endpoint=True)
else:
bins = np.asarray(bins)
bins = bins[np.argsort(bins)]
idx = np.argsort(coords)
coords = coords[idx]
radii = agg['radius'][idx]
# left: inserts at i where coords[:i] < edge
# right: inserts at i where coords[:i] <= edge
# r_ concatenates
bin_idx = np.r_[coords.searchsorted(bins, side='right')]
binned = [radii[i:j] for i, j in zip(bin_idx[:-1], bin_idx[1:])]
return binned, bins
[docs] def histogram_radii(self, aggregator=np.mean, frames=None,
bins=100, range=None):
"""Histograms the pore radii into bins by reaction coordinate,
aggregate the radii with an `aggregator` function, and returns the
aggregated radii and bin edges.
Parameters
----------
aggregator : callable, optional
this function must take an iterable of floats and return a
single value.
frames : int or iterable of ints, optional
Profiles to include by frame. If ``None``, includes
all frames.
bins : int or iterable of edges, optional
If bins is an int, it defines the number of equal-width bins in the given
range. If bins is a sequence, it defines a monotonically increasing array of
bin edges, including the rightmost edge, allowing for non-uniform bin widths.
range : (float, float), optional
The lower and upper range of the bins.
If not provided, ``range`` is simply ``(a.min(), a.max())``,
where ``a`` is the array of reaction coordinates.
Values outside the range are ignored. The first element of the range must be
less than or equal to the second.
Returns
-------
array of floats
histogrammed, aggregate value of radii
array of (float, float)
Edges of each bin
"""
binned, bins = self.bin_radii(frames=frames, bins=bins, range=range)
return np.array(list(map(aggregator, binned))), bins
[docs] def plot_mean_profile(self, bins=100, range=None,
frames=None, color='blue',
linestyle='-', ax=None,
xlabel='Frame', fill_alpha=0.3,
n_std=1, legend=True,
legend_loc='best',
**kwargs):
"""Collects the pore radii into bins by reaction coordinate.
Parameters
----------
frames : int or iterable of ints, optional
Profiles to include by frame. If ``None``, includes
all frames.
bins : int or iterable of edges, optional
If bins is an int, it defines the number of equal-width bins in the given
range. If bins is a sequence, it defines a monotonically increasing array of
bin edges, including the rightmost edge, allowing for non-uniform bin widths.
range : (float, float), optional
The lower and upper range of the bins.
If not provided, ``range`` is simply ``(a.min(), a.max())``,
where ``a`` is the array of reaction coordinates.
Values outside the range are ignored. The first element of the range must be
less than or equal to the second.
color : str or array-like, optional
Color for the plot.
linestyle : str or array-like, optional
Line style for the plot.
ax : :class:`matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
xlabel : str, optional
X-axis label.
fill_alpha : float, optional
Opacity of filled standard deviation area
n_std : int, optional
Number of standard deviations from the mean to fill between.
legend : bool, optional
Whether to plot a legend.
legend_loc : str, optional
Location of legend.
**kwargs :
All other `kwargs` are passed to :func:`matplotlib.pyplot.plot`.
Returns
-------
ax : :class:`~matplotlib.axes.Axes`
Axes with the plot, either `ax` or the current axes.
"""
binned, bins = self.bin_radii(frames=frames, bins=bins, range=range)
mean = np.array(list(map(np.mean, binned)))
midpoints = 0.5 * bins[1:] + bins[:-1]
fig, ax = plt.subplots()
if n_std:
std = np.array(list(map(np.std, binned)))
ax.fill_between(midpoints, mean-(n_std*std), mean+(n_std*std),
color=color, alpha=fill_alpha,
label='{} std'.format(n_std))
ax.plot(midpoints, mean, color=color,
linestyle=linestyle, label='mean', **kwargs)
ax.set_xlabel(r"Pore coordinate $\zeta$ ($\AA$)")
ax.set_ylabel(r"HOLE radius $R$ ($\AA$)")
if legend:
ax.legend(loc=legend_loc)
return ax
[docs] def plot3D_order_parameters(self, order_parameters,
frames=None,
color=None,
cmap='viridis',
linestyle='-', ax=None,
r_max=None,
ylabel=r'Order parameter',
**kwargs):
r"""Plot HOLE radii over order parameters as a 3D graph.
Lines are colored according to the specified ``color`` or
drawn from the color map ``cmap``. One line is
plotted for each trajectory frame.
Parameters
----------
order_parameters : array-like or string
Sequence or text file containing order parameters(float
numbers) corresponding to the frames in the trajectory. Must
be same length as trajectory.
frames : array-like, optional
Frames to plot. If ``None``, plots all of them.
color : str or array-like, optional
Color or colors for the plot. If ``None``, colors are
drawn from ``cmap``.
cmap : str, optional
color map to make colors for the plot if ``color`` is
not given. Names should be from the ``matplotlib.pyplot.cm``
module.
linestyle : str or array-like, optional
Line style for the plot.
ax : : class: `matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
r_max : float, optional
only display radii up to ``r_max``. If ``None``, all radii are
plotted.
ylabel : str, optional
Y-axis label.
**kwargs :
All other `kwargs` are passed to: func: `matplotlib.pyplot.plot`.
Returns
-------
ax: : class: `~mpl_toolkits.mplot3d.Axes3D`
Axes with the plot, either `ax` or the current axes.
"""
op_profiles = self.over_order_parameters(order_parameters,
frames=frames)
from mpl_toolkits.mplot3d import Axes3D
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ocl = self._process_plot_kwargs(frames=list(op_profiles.keys()),
color=color, cmap=cmap,
linestyle=linestyle)
for op, c, ls in zip(*ocl):
profile = op_profiles[op]
if r_max is None:
radius = profile.radius
rxn_coord = profile.rxn_coord
else:
# does not seem to work with masked arrays but with nan hack!
# http://stackoverflow.com/questions/4913306/python-matplotlib-mplot3d-how-do-i-set-a-maximum-value-for-the-z-axis
rxn_coord = profile.rxn_coord
radius = profile.radius.copy()
radius[radius > r_max] = np.nan
ax.plot(rxn_coord, op*np.ones_like(rxn_coord), radius,
color=c, linestyle=ls, zorder=int(-op), label=str(op),
**kwargs)
ax.set_xlabel(r"Pore coordinate $\zeta$ ($\AA$)")
ax.set_ylabel(ylabel)
ax.set_zlabel(r"HOLE radius $R$ ($\AA$)")
plt.tight_layout()
return ax