5.17. PDBQT topology parser

Use a PDBQT file to build a minimum internal structure representation (list of atoms), including AutoDock atom types (stored as Atom.type) and partial charges (Atom.charge).

  • Reads a PDBQT file line by line and does not require sequential atom numbering.

  • Multi-model PDBQT files are not supported.

Note

By default, masses will be guessed on Universe creation. This may change in release 3.0. See Guesser modules for more information.

Notes

Only reads atoms and their names; connectivity is not deduced.

5.17.1. Classes

class MDAnalysis.topology.PDBQTParser.PDBQTParser(filename)[source]

Read topology from a PDBQT file.

Creates the following Attributes:
  • atom ids (serial)

  • atom types

  • atom names

  • altLocs

  • resnames

  • chainIDs (assigned to segid as well)

  • resids

  • record_types (ATOM/HETATM)

  • icodes

  • occupancies

  • tempfactors

  • charges

Changed in version 0.18.0: Added parsing of Record types

Changed in version 2.7.0: Columns 67 - 70 in ATOM records, corresponding to the field footnote, are now ignored. See Autodock’s reference.

Changed in version 2.8.0: Removed mass guessing (attributes guessing takes place now through universe.guess_TopologyAttrs() API).

close()

Close the trajectory file.

convert_forces_from_native(force, inplace=True)

Conversion of forces array force from native to base units

Parameters:
  • force (array_like) – Forces to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input force is modified in place and also returned. In-place operations improve performance because allocating new arrays is avoided.

Added in version 0.7.7.

convert_forces_to_native(force, inplace=True)

Conversion of force array force from base to native units.

Parameters:
  • force (array_like) – Forces to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input force is modified in place and also returned. In-place operations improve performance because allocating new arrays is avoided.

Added in version 0.7.7.

convert_pos_from_native(x, inplace=True)

Conversion of coordinate array x from native units to base units.

Parameters:
  • x (array_like) – Positions to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input x is modified in place and also returned. In-place operations improve performance because allocating new arrays is avoided.

Changed in version 0.7.5: Keyword inplace can be set to False so that a modified copy is returned unless no conversion takes place, in which case the reference to the unmodified x is returned.

convert_pos_to_native(x, inplace=True)

Conversion of coordinate array x from base units to native units.

Parameters:
  • x (array_like) – Positions to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input x is modified in place and also returned. In-place operations improve performance because allocating new arrays is avoided.

Changed in version 0.7.5: Keyword inplace can be set to False so that a modified copy is returned unless no conversion takes place, in which case the reference to the unmodified x is returned.

convert_time_from_native(t, inplace=True)

Convert time t from native units to base units.

Parameters:
  • t (array_like) – Time values to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input t is modified in place and also returned (although note that scalar values t are passed by value in Python and hence an in-place modification has no effect on the caller.) In-place operations improve performance because allocating new arrays is avoided.

Changed in version 0.7.5: Keyword inplace can be set to False so that a modified copy is returned unless no conversion takes place, in which case the reference to the unmodified x is returned.

convert_time_to_native(t, inplace=True)

Convert time t from base units to native units.

Parameters:
  • t (array_like) – Time values to transform

  • inplace (bool, optional) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input t is modified in place and also returned. (Also note that scalar values t are passed by value in Python and hence an in-place modification has no effect on the caller.)

Changed in version 0.7.5: Keyword inplace can be set to False so that a modified copy is returned unless no conversion takes place, in which case the reference to the unmodified x is returned.

convert_velocities_from_native(v, inplace=True)

Conversion of velocities array v from native to base units

Parameters:
  • v (array_like) – Velocities to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input v is modified in place and also returned. In-place operations improve performance because allocating new arrays is avoided.

Added in version 0.7.5.

convert_velocities_to_native(v, inplace=True)

Conversion of coordinate array v from base to native units

Parameters:
  • v (array_like) – Velocities to transform

  • inplace (bool (optional)) – Whether to modify the array inplace, overwriting previous data

Note

By default, the input v is modified in place and also returned. In-place operations improve performance because allocating new arrays is avoided.

Added in version 0.7.5.

parse(**kwargs)[source]

Parse atom information from PDBQT file filename.

Return type:

MDAnalysis Topology object

units = {'length': None, 'time': None, 'velocity': None}

dict with units of of time and length (and velocity, force, … for formats that support it)