4.8.1. Generating densities from trajectories — MDAnalysis.analysis.density
- Author
Oliver Beckstein
- Year
2011
- Copyright
GNU Public License v3
The module provides classes and functions to generate and represent volumetric data, in particular densities.
Changed in version 2.0.0: Deprecated density_from_Universe()
, density_from_PDB()
, and
Bfactor2RMSF()
have now been removed.
4.8.1.1. Generating a density from a MD trajectory
A common use case is to analyze the solvent density around a protein of
interest. The density is calculated with DensityAnalysis
in the
fixed coordinate system of the simulation unit cell. It is therefore necessary
to orient and fix the protein with respect to the box coordinate system. In
practice this means centering and superimposing the protein, frame by frame, on
a reference structure and translating and rotating all other components of the
simulation with the protein. In this way, the solvent will appear in the
reference frame of the protein.
An input trajectory must
have been centered on the protein of interest;
have all molecules made whole that have been broken across periodic boundaries 1;
have the solvent molecules remapped so that they are closest to the solute (this is important when using triclinic unit cells such as a dodecahedron or a truncated octahedron) 1.
have a fixed frame of reference; for instance, by superimposing a protein on a reference structure so that one can study the solvent density around it 2.
To generate the density of water molecules around a protein (assuming that the trajectory is already appropriately treated for periodic boundary artifacts and is suitably superimposed to provide a fixed reference frame) 3
from MDAnalysis.analysis.density import DensityAnalysis
u = Universe(TPR, XTC)
ow = u.select_atoms("name OW")
D = DensityAnalysis(ow, delta=1.0)
D.run()
D.results.density.convert_density('TIP4P')
D.results.density.export("water.dx", type="double")
The positions of all water oxygens (the AtomGroup
ow) are
histogrammed on a grid with spacing delta = 1 Å. Initially the density is
measured in \(\text{Å}^{-3}\). With the Density.convert_density()
method, the units of measurement are changed. In the example we are now
measuring the density relative to the literature value of the TIP4P water model
at ambient conditions (see the values in MDAnalysis.units.water
for
details). Finally, the density is written as an OpenDX compatible file that
can be read in VMD, Chimera, or PyMOL.
The Density
object is accessible as the
DensityAnalysis.results.density
attribute. In particular, the data
for the density is stored as a NumPy array in Density.grid
, which can
be processed in any manner.
4.8.1.2. Creating densities
The DensityAnalysis
class generates a Density
from an
atomgroup.
- class MDAnalysis.analysis.density.DensityAnalysis(atomgroup, delta=1.0, metadata=None, padding=2.0, gridcenter=None, xdim=None, ydim=None, zdim=None)[source]
Volumetric density analysis.
The trajectory is read, frame by frame, and the atoms in atomgroup are histogrammed on a 3D grid with spacing delta.
- Parameters
atomgroup (AtomGroup or UpdatingAtomGroup) – Group of atoms (such as all the water oxygen atoms) being analyzed. This can be an
UpdatingAtomGroup
for selections that change every time step.delta (float (optional)) – Bin size for the density grid in ångström (same in x,y,z).
padding (float (optional)) – Increase histogram dimensions by padding (on top of initial box size) in ångström. Padding is ignored when setting a user defined grid.
gridcenter (numpy ndarray, float32 (optional)) – 3 element numpy array detailing the x, y and z coordinates of the center of a user defined grid box in ångström.
xdim (float (optional)) – User defined x dimension box edge in ångström.
ydim (float (optional)) – User defined y dimension box edge in ångström.
zdim (float (optional)) – User defined z dimension box edge in ångström.
- results.density
A
Density
instance containing a physical density of units \(Angstrom^{-3}\).After the analysis (see the
run()
method), the resulting density is stored in theresults.density
attribute as aDensity
instance. Note: this replaces the now deprecateddensity
attribute.- Type
- density
Alias to the
results.density
.Deprecated since version 2.0.0: Will be removed in MDAnalysis 3.0.0. Please use
results.density
instead.- Type
- Raises
ValueError – if AtomGroup is empty and no user defined grid is provided, or if the user defined grid is not or incorrectly provided
UserWarning – if AtomGroup is empty and a user defined grid is provided
See also
pmda.density.DensityAnalysis
A parallel version of
DensityAnalysis
Notes
If the gridcenter and x/y/zdim arguments are not provided,
DensityAnalysis
will attempt to automatically generate a gridbox from the atoms in ‘atomgroup’ (See Examples).Normal
AtomGroup
instances represent a static selection of atoms. If you want dynamically changing selections (such as “name OW and around 4.0 (protein and not name H*)”, i.e., the water oxygen atoms that are within 4 Å of the protein heavy atoms) then create anUpdatingAtomGroup
(see Examples).DensityAnalysis
will fail when theAtomGroup
instance does not contain any selection of atoms, even when updating is set toTrue
. In such a situation, user defined box limits can be provided to generate a Density. Although, it remains the user’s responsibility to ensure that the provided grid limits encompass atoms to be selected on all trajectory frames.Examples
A common use case is to analyze the solvent density around a protein of interest. The density is calculated with
DensityAnalysis
in the fixed coordinate system of the simulation unit cell. It is therefore necessary to orient and fix the protein with respect to the box coordinate system. In practice this means centering and superimposing the protein, frame by frame, on a reference structure and translating and rotating all other components of the simulation with the protein. In this way, the solvent will appear in the reference frame of the protein.An input trajectory must
have been centered on the protein of interest;
have all molecules made whole that have been broken across periodic boundaries 1;
have the solvent molecules remapped so that they are closest to the solute (this is important when using triclinic unit cells such as a dodecahedron or a truncated octahedron) 1;
have a fixed frame of reference; for instance, by superimposing a protein on a reference structure so that one can study the solvent density around it 2.
Generate the density
To generate the density of water molecules around a protein (assuming that the trajectory is already appropriately treated for periodic boundary artifacts and is suitably superimposed to provide a fixed reference frame) 3, first create the
DensityAnalysis
object by supplying an AtomGroup, then use therun()
method:from MDAnalysis.analysis import density u = Universe(TPR, XTC) ow = u.select_atoms("name OW") D = density.DensityAnalysis(ow, delta=1.0) D.run() D.results.density.convert_density('TIP4P')
The positions of all water oxygens are histogrammed on a grid with spacing delta = 1 Å and stored as a
Density
object in the attributeDensityAnalysis.results.density
.Working with a density
A
Density
contains a large number of methods and attributes that are listed in the documentation. Here we use theDensity.convert_density()
to convert the density from inverse cubic ångström to a density relative to the bulk density of TIP4P water at standard conditions. (MDAnalysis stores a number of literature values inMDAnalysis.units.water
.)One can directly access the density as a 3D NumPy array through
Density.grid
.By default, the
Density
object returned contains a physical density in units of Å-3. If you are interested in recovering the underlying probability density, simply divide by the sum:probability_density = D.results.density.grid / D.results.density.grid.sum()
Similarly, if you would like to recover a grid containing a histogram of atom counts, simply multiply by the volume dV of each bin (or voxel); in this case you need to ensure that the physical density is measured in Å-3 by converting it:
import numpy as np # ensure that the density is A^{-3} D.results.density.convert_density("A^{-3}") dV = np.prod(D.results.density.delta) atom_count_histogram = D.results.density.grid * dV
Writing the density to a file
A density can be exported to different formats with
Density.export()
(thanks to the fact thatDensity
is a subclassgridData.core.Grid
, which provides the functionality). For example, to write a DX filewater.dx
that can be read with VMD, PyMOL, or Chimera:D.results.density.export("water.dx", type="double")
Example: Water density in the whole simulation
Basic use for creating a water density (just using the water oxygen atoms “OW”):
D = DensityAnalysis(universe.select_atoms('name OW')).run()
Example: Water in a binding site (updating selection)
If you are only interested in water within a certain region, e.g., within a vicinity around a binding site, you can use a selection that updates every step by using an
UpdatingAtomGroup
:near_waters = universe.select_atoms('name OW and around 5 (resid 156 157 305)', updating=True) D_site = DensityAnalysis(near_waters).run()
Example: Small region around a ligand (manual box selection)
If you are interested in explicitly setting a grid box of a given edge size and origin, you can use the gridcenter and xdim/ydim/zdim arguments. For example to plot the density of waters within 5 Å of a ligand (in this case the ligand has been assigned the residue name “LIG”) in a cubic grid with 20 Å edges which is centered on the center of mass (COM) of the ligand:
# Create a selection based on the ligand ligand_selection = universe.select_atoms("resname LIG") # Extract the COM of the ligand ligand_COM = ligand_selection.center_of_mass() # Create a density of waters on a cubic grid centered on the ligand COM # In this case, we update the atom selection as shown above. ligand_waters = universe.select_atoms('name OW and around 5 resname LIG', updating=True) D_water = DensityAnalysis(ligand_waters, delta=1.0, gridcenter=ligand_COM, xdim=20, ydim=20, zdim=20)
(It should be noted that the padding keyword is not used when a user defined grid is assigned).
New in version 1.0.0.
Changed in version 2.0.0:
_set_user_grid()
is now a method ofDensityAnalysis
.Density
results are now stored in aMDAnalysis.analysis.base.Results
instance.- static _set_user_grid(gridcenter, xdim, ydim, zdim, smin, smax)[source]
Helper function to set the grid dimensions to user defined values
- Parameters
gridcenter (numpy ndarray, float32) – 3 element ndarray containing the x, y and z coordinates of the grid box center
xdim (float) – Box edge length in the x dimension
ydim (float) – Box edge length in the y dimension
zdim (float) – Box edge length in the y dimension
smin (numpy ndarray, float32) – Minimum x,y,z coordinates for the input selection
smax (numpy ndarray, float32) – Maximum x,y,z coordinates for the input selection
- Returns
umin (numpy ndarray, float32) – Minimum x,y,z coordinates of the user defined grid
umax (numpy ndarray, float32) – Maximum x,y,z coordinates of the user defined grid
Changed in version 2.0.0: Now a staticmethod of
DensityAnalysis
.
- run(start=None, stop=None, step=None, frames=None, verbose=None, *, progressbar_kwargs={})
Perform the calculation
- Parameters
start (int, optional) – start frame of analysis
stop (int, optional) – stop frame of analysis
step (int, optional) – number of frames to skip between each analysed frame
frames (array_like, optional) –
array of integers or booleans to slice trajectory; frames can only be used instead of start, stop, and step. Setting both frames and at least one of start, stop, step to a non-default value will raise a
ValueError
.New in version 2.2.0.
verbose (bool, optional) – Turn on verbosity
progressbar_kwargs (dict, optional) – ProgressBar keywords with custom parameters regarding progress bar position, etc; see
MDAnalysis.lib.log.ProgressBar
for full list.
Changed in version 2.2.0: Added ability to analyze arbitrary frames by passing a list of frame indices in the frames keyword argument.
Changed in version 2.5.0: Add progressbar_kwargs parameter, allowing to modify description, position etc of tqdm progressbars
4.8.1.3. Density object
The main output of the density creation functions is a Density
instance, which is derived from a gridData.core.Grid
. A
Density
is essentially a 3D array with origin and lengths.
- class MDAnalysis.analysis.density.Density(*args, **kwargs)[source]
Bases:
Grid
Class representing a density on a regular cartesian grid.
- Parameters
grid (array_like) – histogram or density, typically a
numpy.ndarray
edges (list) – list of arrays, the lower and upper bin edges along the axes
parameters (dict) –
dictionary of class parameters; saved with
Density.save()
. The following keys are meaningful to the class. Meaning of the values are listed:isDensity
False
: grid is a histogram with counts [default]True
: a density
Applying
Density.make_density`()
sets it toTrue
.units (dict) –
A dict with the keys
length: physical unit of grid edges (Angstrom or nm) [Angstrom]
density: unit of the density if
isDensity=True
orNone
otherwise; the default is “Angstrom^{-3}” for densities (meaning \(\text{Å}^{-3}\)).
metadata (dict) – a user defined dictionary of arbitrary values associated with the density; the class does not touch
Density.metadata
but stores it withDensity.save()
- grid
counts or density
- Type
array
- edges
The boundaries of each cell in grid along all axes (equivalent to what
numpy.histogramdd()
returns).- Type
list of 1d-arrays
- delta
Cell size in each dimension.
- Type
array
- origin
Coordinates of the center of the cell at index grid[0, 0, 0, …, 0], which is considered to be the front lower left corner.
- Type
array
- units
The units for lengths and density; change units with the method
convert_length()
orconvert_density()
.- Type
Notes
The data (
Density.grid
) can be manipulated as a standard numpy array. Changes can be saved to a file using theDensity.save()
method. The grid can be restored using theDensity.load()
method or by supplying the filename to the constructor.The attribute
Density.metadata
holds a user-defined dictionary that can be used to annotate the data. It is also saved withDensity.save()
.The
Density.export()
method always exports a 3D object (written in such a way to be readable in VMD, Chimera, and PyMOL), the rest should work for an array of any dimension. Note that PyMOL only understands DX files with the DX data type “double” in the “array” object (see known issues when writing OpenDX files and issue MDAnalysis/GridDataFormats#35 for details). Using the keywordtype="double"
for the methodDensity.export()
, the user can ensure that the DX file is written in a format suitable for PyMOL.If the input histogram consists of counts per cell then the
Density.make_density()
method converts the grid to a physical density. For a probability density, divide it byDensity.grid.sum()
or usedensity=True
right away inhistogramdd()
.The user should set the parameters keyword (see docs for the constructor); in particular, if the data are already a density, one must set
isDensity=True
because there is no reliable way to detect if data represent counts or a density. As a special convenience, if data are read from a file and the user has not setisDensity
then it is assumed that the data are in fact a density.See also
Examples
Typical use:
From a histogram (i.e. counts on a grid):
h,edges = numpy.histogramdd(...) D = Density(h, edges, parameters={'isDensity': False}, units={'length': 'A'}) D.make_density()
From a saved density file (e.g. in OpenDX format), where the lengths are in Angstrom and the density in 1/A**3:
D = Density("density.dx")
From a saved density file (e.g. in OpenDX format), where the lengths are in Angstrom and the density is measured relative to the density of water at ambient conditions:
D = Density("density.dx", units={'density': 'water'})
From a saved histogram (less common, but in order to demonstrate the parameters keyword) where the lengths are in nm:
D = Density("counts.dx", parameters={'isDensity': False}, units={'length': 'nm'}) D.make_density() D.convert_length('Angstrom^{-3}') D.convert_density('water')
After the final step,
D
will contain a density on a grid measured in ångström, with the density values itself measured relative to the density of water.
Density
objects can be algebraically manipulated (added, subtracted, multiplied, …) but there are no sanity checks in place to make sure that units, metadata, etc are compatible!Note
It is suggested to construct the Grid object from a histogram, to supply the appropriate length unit, and to use
Density.make_density()
to obtain a density. This ensures that the length- and the density unit correspond to each other.- centers()
Returns the coordinates of the centers of all grid cells as an iterator.
See also
numpy.ndindex()
- check_compatible(other)
Check if other can be used in an arithmetic operation.
other is compatible if
other is a scalar
other is a grid defined on the same edges
In order to make other compatible, resample it on the same grid as this one using
resample()
.- Parameters
other (Grid or float or int) – Another object to be used for standard arithmetic operations with this
Grid
- Raises
TypeError – if not compatible
See also
- convert_density(unit='Angstrom')[source]
Convert the density to the physical units given by unit.
- Parameters
unit (str (optional)) –
The target unit that the density should be converted to.
unit can be one of the following:
name
description of the unit
Angstrom^{-3}
particles/A**3
nm^{-3}
particles/nm**3
SPC
density of SPC water at standard conditions
TIP3P
… see
MDAnalysis.units.water
TIP4P
… see
MDAnalysis.units.water
water
density of real water at standard conditions (0.997 g/cm**3)
Molar
mol/l
- Raises
RuntimeError – If the density does not have a unit associated with it to begin with (i.e., is not a density) then no conversion can take place.
ValueError – for unknown unit.
Notes
This method only works if there is already a length unit associated with the density; otherwise raises
RuntimeError
Conversions always go back to unity so there can be rounding and floating point artifacts for multiple conversions.
- convert_length(unit='Angstrom')[source]
Convert Grid object to the new unit.
- Parameters
unit (str (optional)) – unit that the grid should be converted to: one of “Angstrom”, “nm”
Notes
This changes the edges but will not change the density; it is the user’s responsibility to supply the appropriate unit if the Grid object is constructed from a density. It is suggested to start from a histogram and a length unit and use
make_density()
.
- export(filename, file_format=None, type=None, typequote='"')
export density to file using the given format.
The format can also be deduced from the suffix of the filename although the file_format keyword takes precedence.
The default format for
export()
is ‘dx’. Use ‘dx’ for visualization.Implemented formats:
- dx
OpenDX
- pickle
pickle (use
Grid.load()
to restore);Grid.save()
is simpler thanexport(format='python')
.
- Parameters
filename (str) – name of the output file
file_format ({'dx', 'pickle', None} (optional)) – output file format, the default is “dx”
type (str (optional)) –
for DX, set the output DX array type, e.g., “double” or “float”. By default (
None
), the DX type is determined from the numpy dtype of the array of the grid (and this will typically result in “double”).New in version 0.4.0.
typequote (str (optional)) –
For DX, set the character used to quote the type string; by default this is a double-quote character, ‘”’. Custom parsers like the one from NAMD-GridForces (backend for MDFF) expect no quotes, and typequote=’’ may be used to appease them.
New in version 0.5.0.
- property interpolated
B-spline function over the data grid(x,y,z).
The
interpolated()
function allows one to obtain data values for any values of the coordinates:interpolated([x1,x2,...],[y1,y2,...],[z1,z2,...]) -> F[x1,y1,z1],F[x2,y2,z2],...
The interpolation order is set in
Grid.interpolation_spline_order
.The interpolated function is computed once and is cached for better performance. Whenever
interpolation_spline_order
is modified,Grid.interpolated()
is recomputed.The value for unknown data is set in
Grid.interpolation_cval
(TODO: also recompute wheninterpolation_cval
value is changed.)Example
Example usage for resampling:
XX, YY, ZZ = numpy.mgrid[40:75:0.5, 96:150:0.5, 20:50:0.5] FF = interpolated(XX, YY, ZZ)
Note
Values are interpolated with a spline function. It is possible that the spline will generate values that would not normally appear in the data. For example, a density is non-negative but a cubic spline interpolation can generate negative values, especially at the boundary between 0 and high values.
Internally, the function uses
scipy.ndimage.map_coordinates()
withmode="constant"
whereby interpolated values outside the interpolated grid are determined by filling all values beyond the edge with the same constant value, defined by theinterpolation_cval
parameter, which when not set defaults to the minimum value in the interpolated grid.Changed in version 0.6.0: Interpolation outside the grid is now performed with
mode="constant"
rather thanmode="nearest"
, eliminating extruded volumes when interpolating beyond the grid.
- property interpolation_spline_order
Order of the B-spline interpolation of the data.
3 = cubic; 4 & 5 are also supported
Only choose values that are acceptable to
scipy.ndimage.spline_filter()
!See also
- load(filename, file_format=None)
Load saved grid and edges from filename
The
load()
method calls the class’s constructor method and completely resets all values, based on the loaded data.
- make_density()[source]
Convert the grid (a histogram, counts in a cell) to a density (counts/volume).
This method changes the grid irrevocably.
For a probability density, manually divide by
grid.sum()
.If this is already a density, then a warning is issued and nothing is done, so calling make_density multiple times does not do any harm.
- resample(edges)
Resample data to a new grid with edges edges.
This method creates a new grid with the data from the current grid resampled to a regular grid specified by edges. The order of the interpolation is set by
Grid.interpolation_spline_order
: change the value before callingresample()
.- Parameters
edges (tuple of arrays or Grid) – edges of the new grid or a
Grid
instance that providesGrid.edges
- Returns
a new
Grid
with the data interpolated over the new grid cells- Return type
Grid
Examples
Providing edges (a tuple of three arrays, indicating the boundaries of each grid cell):
g = grid.resample(edges)
As a convenience, one can also supply another
Grid
as the argument for this methodg = grid.resample(othergrid)
and the edges are taken from
Grid.edges
.
- resample_factor(factor)
Resample to a new regular grid.
- Parameters
factor (float) – The number of grid cells are scaled with factor in each dimension, i.e.,
factor * N_i
cells along each dimension i. Must be positive, and cannot result in fewer than 2 cells along a dimension.- Returns
interpolated grid – The resampled data are represented on a
Grid
with the new grid cell sizes.- Return type
Grid
See also
Changed in version 0.6.0: Previous implementations would not alter the range of the grid edges being resampled on. As a result, values at the grid edges would creep steadily inward. The new implementation recalculates the extent of grid edges for every resampling.
- save(filename)
Save a grid object to filename and add “.pickle” extension.
Internally, this calls
Grid.export(filename, format="python")
. A grid can be regenerated from the saved data withg = Grid(filename="grid.pickle")
Note
The pickle format depends on the Python version and therefore it is not guaranteed that a grid saved with, say, Python 2.7 can also be read with Python 3.5. The OpenDX format is a better alternative for portability.
Footnotes
- 1(1,2,3,4)
Making molecules whole can be accomplished with the
MDAnalysis.core.groups.AtomGroup.wrap()
ofUniverse.atoms
(usecompound="fragments"
). or the PBC-wrapping transformations inMDAnalysis.transformations.wrap
.- 2(1,2)
Superposition can be performed with
MDAnalysis.analysis.align.AlignTraj
or the fitting transformations inMDAnalysis.transformations.fit
.- 3(1,2)
Note that the trajectory in the example (XTC) is not properly made whole and fitted to a reference structure; these steps were omitted to clearly show the steps necessary for the actual density calculation.