# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
r"""
Calculating path similarity --- :mod:`MDAnalysis.analysis.psa`
==========================================================================
:Author: Sean Seyler
:Year: 2015
:Copyright: GNU Public License v3
.. versionadded:: 0.10.0
The module contains code to calculate the geometric similarity of trajectories
using path metrics such as the Hausdorff or Fréchet distances
:cite:p:`Seyler2015`. The path metrics are functions of two paths and return a
nonnegative number, i.e., a distance. Two paths are identical if their distance
is zero, and large distances indicate dissimilarity. Each path metric is a
function of the individual points (e.g., coordinate snapshots) that comprise
each path and, loosely speaking, identify the two points, one per path of a
pair of paths, where the paths deviate the most.  The distance between these
points of maximal deviation is measured by the root mean square deviation
(RMSD), i.e., to compute structural similarity.
One typically computes the pairwise similarity for an ensemble of paths to
produce a symmetric distance matrix, which can be clustered to, at a glance,
identify patterns in the trajectory data. To properly analyze a path ensemble,
one must select a suitable reference structure to which all paths (each
conformer in each path) will be universally aligned using the rotations
determined by the best-fit rmsds. Distances between paths and their structures
are then computed directly with no further alignment. This pre-processing step
is necessary to preserve the metric properties of the Hausdorff and Fréchet
metrics; using the best-fit rmsd on a pairwise basis does not generally
preserve the triangle inequality.
Note
----
The `PSAnalysisTutorial`_ outlines a typical application of PSA to
a set of trajectories, including doing proper alignment,
performing distance comparisons, and generating heat
map-dendrogram plots from hierarchical clustering.
.. Rubric:: References
.. bibliography::
    :filter: False
    :style: MDA
    Seyler2015
.. _`PSAnalysisTutorial`: https://github.com/Becksteinlab/PSAnalysisTutorial
Helper functions and variables
------------------------------
The following convenience functions are used by other functions in this module.
.. autofunction:: sqnorm
.. autofunction:: get_msd_matrix
.. autofunction:: get_coord_axes
Classes, methods, and functions
-------------------------------
.. autofunction:: get_path_metric_func
.. autofunction:: hausdorff
.. autofunction:: hausdorff_wavg
.. autofunction:: hausdorff_avg
.. autofunction:: hausdorff_neighbors
.. autofunction:: discrete_frechet
.. autofunction:: dist_mat_to_vec
.. autoclass:: Path
   :members:
   .. attribute:: u_original
      :class:`MDAnalysis.Universe` object with a trajectory
   .. attribute:: u_reference
      :class:`MDAnalysis.Universe` object containing a reference structure
   .. attribute:: select
      string, selection for
      :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select frame
      from :attr:`Path.u_reference`
   .. attribute:: path_select
      string, selection for
      :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select atoms
      to compose :attr:`Path.path`
   .. attribute:: ref_frame
      int, frame index to select frame from :attr:`Path.u_reference`
   .. attribute:: u_fitted
      :class:`MDAnalysis.Universe` object with the fitted trajectory
   .. attribute:: path
      :class:`numpy.ndarray` object representation of the fitted trajectory
.. autoclass:: PSAPair
   .. attribute:: npaths
      int, total number of paths in the comparison in which *this*
      :class:`PSAPair` was generated
   .. attribute:: matrix_id
      (int, int), (row, column) indices of the location of *this*
      :class:`PSAPair` in the corresponding pairwise distance matrix
   .. attribute:: pair_id
      int, ID of *this* :class:`PSAPair` (the pair_id:math:`^\text{th}`
      comparison) in the distance vector corresponding to the pairwise distance
      matrix
   .. attribute:: nearest_neighbors
      dict, contains the nearest neighbors by frame index and the
      nearest neighbor distances for each path in *this* :class:`PSAPair`
   .. attribute:: hausdorff_pair
      dict, contains the frame indices of the Hausdorff pair for each path in
      *this* :class:`PSAPair` and the corresponding (Hausdorff) distance
.. autoclass:: PSAnalysis
   :members:
   .. attribute:: universes
      list of :class:`MDAnalysis.Universe` objects containing trajectories
   .. attribute:: u_reference
      :class:`MDAnalysis.Universe` object containing a reference structure
   .. attribute:: select
      string, selection for
      :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select frame
      from :attr:`PSAnalysis.u_reference`
   .. attribute:: path_select
      string, selection for
      :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` to select atoms
      to compose :attr:`Path.path`
   .. attribute:: ref_frame
      int, frame index to select frame from :attr:`Path.u_reference`
   .. attribute:: paths
      list of :class:`numpy.ndarray` objects representing the set/ensemble of
      fitted trajectories
   .. attribute:: D
      :class:`numpy.ndarray` which stores the calculated distance matrix
.. Markup definitions
.. ------------------
..
.. |3Dp| replace:: :math:`N_p \times N \times 3`
.. |2Dp| replace:: :math:`N_p \times (3N)`
.. |3Dq| replace:: :math:`N_q \times N \times 3`
.. |2Dq| replace:: :math:`N_q \times (3N)`
.. |3D| replace:: :math:`N_p\times N\times 3`
.. |2D| replace:: :math:`N_p\times 3N`
.. |Np| replace:: :math:`N_p`
"""
import pickle
import os
import warnings
import numbers
import numpy as np
from scipy import spatial, cluster
from scipy.spatial.distance import directed_hausdorff
import matplotlib
import MDAnalysis
import MDAnalysis.analysis.align
from MDAnalysis import NoDataError
from MDAnalysis.lib.util import deprecate
import logging
logger = logging.getLogger('MDAnalysis.analysis.psa')
from ..due import due, Doi
due.cite(Doi("10.1371/journal.pcbi.1004568"),
         description="Path Similarity Analysis algorithm and implementation",
         path="MDAnalysis.analysis.psa",
         cite_module=True)
del Doi
[docs]def get_path_metric_func(name):
    """Selects a path metric function by name.
    Parameters
    ----------
    name : str
        name of path metric
    Returns
    -------
    path_metric : function
        The path metric function specified by *name* (if found).
    """
    path_metrics = {
            'hausdorff' : hausdorff,
            'weighted_average_hausdorff' : hausdorff_wavg,
            'average_hausdorff' : hausdorff_avg,
            'hausdorff_neighbors' : hausdorff_neighbors,
            'discrete_frechet' : discrete_frechet
    }
    try:
        return path_metrics[name]
    except KeyError as key:
        errmsg = (f'Path metric "{key}" not found. Valid selections: '
                  f'{" ".join(n for n in path_metrics.keys())}')
        raise KeyError(errmsg) from None 
[docs]def sqnorm(v, axis=None):
    """Compute the sum of squares of elements along specified axes.
    Parameters
    ----------
    v :  numpy.ndarray
         coordinates
    axes : None / int / tuple (optional)
         Axes or axes along which a sum is performed. The default
         (*axes* = ``None``) performs a sum over all the dimensions of
         the input array.  The value of *axes* may be negative, in
         which case it counts from the last axis to the zeroth axis.
    Returns
    -------
    float
          the sum of the squares of the elements of `v` along `axes`
    """
    return np.sum(v*v, axis=axis) 
[docs]def get_msd_matrix(P, Q, axis=None):
    r"""Generate the matrix of pairwise mean-squared deviations between paths.
    The MSDs between all pairs of points in `P` and `Q` are
    calculated, each pair having a point from `P` and a point from
    `Q`.
    `P` (`Q`) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time
    steps, :math:`N` atoms, and :math:`3N` coordinates (e.g.,
    :attr:`MDAnalysis.core.groups.AtomGroup.positions`). The pairwise MSD
    matrix has dimensions :math:`N_p` by :math:`N_q`.
    Parameters
    ----------
    P : numpy.ndarray
        the points in the first path
    Q : numpy.ndarray
        the points in the second path
    Returns
    -------
    msd_matrix : numpy.ndarray
         matrix of pairwise MSDs between points in `P` and points
         in `Q`
    Notes
    -----
    We calculate the MSD matrix
    .. math::
       M_{ij} = ||p_i - q_j||^2
    where :math:`p_i \in P` and :math:`q_j \in Q`.
    """
    return np.asarray([sqnorm(p - Q, axis=axis) for p in P]) 
def reshaper(path, axis):
    """Flatten path when appropriate to facilitate calculations
    requiring two dimensional input.
    """
    if len(axis) > 1:
        path = path.reshape(len(path), -1)
    return path
[docs]def get_coord_axes(path):
    """Return the number of atoms and the axes corresponding to atoms
    and coordinates for a given path.
    The `path` is assumed to be a :class:`numpy.ndarray` where the 0th axis
    corresponds to a frame (a snapshot of coordinates). The :math:`3N`
    (Cartesian) coordinates are assumed to be either:
    1. all in the 1st axis, starting with the x,y,z coordinates of the
       first atom, followed by the *x*,*y*,*z* coordinates of the 2nd, etc.
    2. in the 1st *and* 2nd axis, where the 1st axis indexes the atom
       number and the 2nd axis contains the *x*,*y*,*z* coordinates of
       each atom.
    Parameters
    ----------
    path : numpy.ndarray
         representing a path
    Returns
    -------
    (int, (int, ...))
         the number of atoms and the axes containing coordinates
    """
    path_dimensions = len(path.shape)
    if path_dimensions == 3:
        N = path.shape[1]
        axis = (1,2) # 1st axis: atoms, 2nd axis: x,y,z coords
    elif path_dimensions == 2:
        # can use mod to check if total # coords divisible by 3
        N = path.shape[1] / 3
        axis = (1,) # 1st axis: 3N structural coords (x1,y1,z1,...,xN,xN,zN)
    else:
        raise ValueError("Path must have 2 or 3 dimensions; the first "
                         "dimensions (axis 0) must correspond to frames, "
                         "axis 1 (and axis 2, if present) must contain atomic "
                         "coordinates.")
    return N, axis 
[docs]def hausdorff(P, Q):
    r"""Calculate the symmetric Hausdorff distance between two paths.
    The metric used is RMSD, as opposed to the more conventional L2
    (Euclidean) norm, because this is convenient for i.e., comparing
    protein configurations.
    *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time
    steps, :math:`N` atoms, and :math:`3N` coordinates (e.g.,
    :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has
    either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form.
    Note that reversing the path does not change the Hausdorff distance.
    Parameters
    ----------
    P : numpy.ndarray
        the points in the first path
    Q : numpy.ndarray
        the points in the second path
    Returns
    -------
    float
        the Hausdorff distance between paths `P` and `Q`
    Example
    -------
    Calculate the Hausdorff distance between two halves of a trajectory:
     >>> import MDAnalysis as mda
     >>> import numpy
     >>> from MDAnalysis.tests.datafiles import PSF, DCD
     >>> from MDAnalysis.analysis import psa
     >>> u = mda.Universe(PSF,DCD)
     >>> mid = int(len(u.trajectory)/2)
     >>> ca = u.select_atoms('name CA')
     >>> P = numpy.array([
     ...                ca.positions for _ in u.trajectory[:mid:]
     ...              ]) # first half of trajectory
     >>> Q = numpy.array([
     ...                ca.positions for _ in u.trajectory[mid::]
     ...              ]) # second half of trajectory
     >>> psa.hausdorff(P,Q)
     4.778663899862152
     >>> psa.hausdorff(P,Q[::-1]) # hausdorff distance w/ reversed 2nd trajectory
     4.778663899862152
    Notes
    -----
    :func:`scipy.spatial.distance.directed_hausdorff` is an optimized
    implementation of the early break algorithm of :cite:p:`Taha2015`; the
    latter code is used here to calculate the symmetric Hausdorff
    distance with an RMSD metric
    References
    ----------
    .. bibliography::
        :filter: False
        :style: MDA
        Taha2015
    """
    N_p, axis_p = get_coord_axes(P)
    N_q, axis_q = get_coord_axes(Q)
    if N_p != N_q:
        raise ValueError("P and Q must have matching sizes")
    P = reshaper(P, axis_p)
    Q = reshaper(Q, axis_q)
    return max(directed_hausdorff(P, Q)[0],
               directed_hausdorff(Q, P)[0]) / np.sqrt(N_p) 
[docs]def hausdorff_wavg(P, Q):
    r"""Calculate the weighted average Hausdorff distance between two paths.
    *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time
    steps, :math:`N` atoms, and :math:`3N` coordinates (e.g.,
    :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has
    either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form. The nearest
    neighbor distances for *P* (to *Q*) and those of *Q* (to *P*) are averaged
    individually to get the average nearest neighbor distance for *P* and
    likewise for *Q*. These averages are then summed and divided by 2 to get a
    measure that gives equal weight to *P* and *Q*.
    Parameters
    ----------
    P : numpy.ndarray
        the points in the first path
    Q : numpy.ndarray
        the points in the second path
    Returns
    -------
    float
        the weighted average Hausdorff distance between paths `P` and `Q`
    Example
    -------
     >>> import MDAnalysis as mda
     >>> from MDAnalysis import Universe
     >>> from MDAnalysis.tests.datafiles import PSF, DCD
     >>> from MDAnalysis.analysis import psa
     >>> u = mda.Universe(PSF,DCD)
     >>> mid = int(len(u.trajectory)/2)
     >>> ca = u.select_atoms('name CA')
     >>> P = numpy.array([
     ...                ca.positions for _ in u.trajectory[:mid:]
     ...              ]) # first half of trajectory
     >>> Q = numpy.array([
     ...                ca.positions for _ in u.trajectory[mid::]
     ...              ]) # second half of trajectory
     >>> psa.hausdorff_wavg(P,Q)
     2.5669644353703447
     >>> psa.hausdorff_wavg(P,Q[::-1]) # weighted avg hausdorff dist w/ Q reversed
     2.5669644353703447
    Notes
    -----
    The weighted average Hausdorff distance is not a true metric (it does not
    obey the triangle inequality); see :cite:p:`Seyler2015` for further
    details.
    """
    N, axis = get_coord_axes(P)
    d = get_msd_matrix(P, Q, axis=axis)
    out = 0.5*( np.mean(np.amin(d,axis=0)) + np.mean(np.amin(d,axis=1)) )
    return ( out / N )**0.5 
[docs]def hausdorff_avg(P, Q):
    r"""Calculate the average Hausdorff distance between two paths.
    *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time
    steps, :math:`N` atoms, and :math:`3N` coordinates (e.g.,
    :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has
    either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form. The nearest
    neighbor distances for *P* (to *Q*) and those of *Q* (to *P*) are all
    averaged together to get a mean nearest neighbor distance. This measure
    biases the average toward the path that has more snapshots, whereas weighted
    average Hausdorff gives equal weight to both paths.
    Parameters
    ----------
    P : numpy.ndarray
        the points in the first path
    Q : numpy.ndarray
        the points in the second path
    Returns
    -------
    float
        the average Hausdorff distance between paths `P` and `Q`
    Example
    -------
     >>> import MDAnalysis as mda
     >>> from MDAnalysis.tests.datafiles import PSF, DCD
     >>> from MDAnalysis.analysis import psa
     >>> u = mda.Universe(PSF,DCD)
     >>> mid = int(len(u.trajectory)/2)
     >>> ca = u.select_atoms('name CA')
     >>> P = numpy.array([
     ...                ca.positions for _ in u.trajectory[:mid:]
     ...              ]) # first half of trajectory
     >>> Q = numpy.array([
     ...                ca.positions for _ in u.trajectory[mid::]
     ...              ]) # second half of trajectory
     >>> psa.hausdorff_avg(P,Q)
     2.5669646575869005
     >>> psa.hausdorff_avg(P,Q[::-1]) # hausdorff distance w/ reversed 2nd trajectory
     2.5669646575869005
    Notes
    -----
    The average Hausdorff distance is not a true metric (it does not obey the
    triangle inequality); see :cite:p:`Seyler2015` for further details.
    """
    N, axis = get_coord_axes(P)
    d = get_msd_matrix(P, Q, axis=axis)
    out = np.mean( np.append( np.amin(d,axis=0), np.amin(d,axis=1) ) )
    return ( out / N )**0.5 
[docs]def hausdorff_neighbors(P, Q):
    r"""Find the Hausdorff neighbors of two paths.
    *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time
    steps, :math:`N` atoms, and :math:`3N` coordinates (e.g.,
    :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has
    either shape |3Dp| (|3Dq|), or |2Dp| (|2Dq|) in flattened form.
    Parameters
    ----------
    P : numpy.ndarray
        the points in the first path
    Q : numpy.ndarray
        the points in the second path
    Returns
    -------
    dict
        dictionary of two pairs of numpy arrays, the first pair (key
        "frames") containing the indices of (Hausdorff) nearest
        neighbors for `P` and `Q`, respectively, the second (key
        "distances") containing (corresponding) nearest neighbor
        distances for `P` and `Q`, respectively
    Notes
    -----
    - Hausdorff neighbors are those points on the two paths that are separated by
      the Hausdorff distance. They are the farthest nearest neighbors and are
      maximally different in the sense of the Hausdorff distance
      :cite:p:`Seyler2015`.
    - :func:`scipy.spatial.distance.directed_hausdorff` can also provide the
      hausdorff neighbors.
    """
    N, axis = get_coord_axes(P)
    d = get_msd_matrix(P, Q, axis=axis)
    nearest_neighbors = {
        'frames' : (np.argmin(d, axis=1), np.argmin(d, axis=0)),
        'distances' : ((np.amin(d,axis=1)/N)**0.5, (np.amin(d, axis=0)/N)**0.5)
    }
    return nearest_neighbors 
[docs]def discrete_frechet(P, Q):
    r"""Calculate the discrete Fréchet distance between two paths.
    *P* (*Q*) is a :class:`numpy.ndarray` of :math:`N_p` (:math:`N_q`) time
    steps, :math:`N` atoms, and :math:`3N` coordinates (e.g.,
    :attr:`MDAnalysis.core.groups.AtomGroup.positions`). *P* (*Q*) has
    either shape |3Dp| (|3Dq|), or :|2Dp| (|2Dq|) in flattened form.
    Parameters
    ----------
    P : numpy.ndarray
        the points in the first path
    Q : numpy.ndarray
        the points in the second path
    Returns
    -------
    float
        the discrete Fréchet distance between paths *P* and *Q*
    Example
    -------
    Calculate the discrete Fréchet distance between two halves of a
    trajectory.
     >>> import MDAnalysis as mda
     >>> import numpy as np
     >>> from MDAnalysis.tests.datafiles import PSF, DCD
     >>> from MDAnalysis.analysis import psa
     >>> u = mda.Universe(PSF,DCD)
     >>> mid = int(len(u.trajectory)/2)
     >>> ca = u.select_atoms('name CA')
     >>> P = np.array([
     ...                ca.positions for _ in u.trajectory[:mid:]
     ...              ]) # first half of trajectory
     >>> Q = np.array([
     ...                ca.positions for _ in u.trajectory[mid::]
     ...              ]) # second half of trajectory
     >>> psa.discrete_frechet(P,Q)
     4.778663984013591
     >>> psa.discrete_frechet(P,Q[::-1]) # frechet distance w/ 2nd trj reversed 2nd
     6.842901117711383
    Note that reversing the direction increased the Fréchet distance:
    it is sensitive to the direction of the path.
    Notes
    -----
    The discrete Fréchet metric is an approximation to the continuous Fréchet
    metric :cite:p:`Frechet1906,Alt1995`. The calculation of the continuous
    Fréchet distance is implemented with the dynamic programming algorithm of
    :cite:p:`EiterMannila1994,EiterMannila1997`.
    References
    ----------
    .. bibliography::
        :filter: False
        :style: MDA
        Frechet1906
        Alt1995
        EiterMannila1994
        EiterMannila1997
    """
    N, axis = get_coord_axes(P)
    Np, Nq = len(P), len(Q)
    d = get_msd_matrix(P, Q, axis=axis)
    ca = -np.ones((Np, Nq))
    def c(i, j):
        """Compute the coupling distance for two partial paths formed by *P* and
        *Q*, where both begin at frame 0 and end (inclusive) at the respective
        frame indices :math:`i-1` and :math:`j-1`. The partial path of *P* (*Q*)
        up to frame *i* (*j*) is formed by the slicing ``P[0:i]`` (``Q[0:j]``).
        :func:`c` is called recursively to compute the coupling distance
        between the two full paths *P* and *Q*  (i.e., the discrete Frechet
        distance) in terms of coupling distances between their partial paths.
        Parameters
        ----------
        i : int
            partial path of *P* through final frame *i-1*
        j : int
            partial path of *Q* through final frame *j-1*
        Returns
        -------
        dist : float
            the coupling distance between partial paths `P[0:i]` and `Q[0:j]`
        """
        if ca[i,j] != -1 :
            return ca[i,j]
        if i > 0:
            if j > 0:
                ca[i,j] = max( min(c(i-1,j),c(i,j-1),c(i-1,j-1)), d[i,j] )
            else:
                ca[i,j] = max( c(i-1,0), d[i,0] )
        elif j > 0:
            ca[i,j] = max( c(0,j-1), d[0,j] )
        else:
            ca[i,j] = d[0,0]
        return ca[i,j]
    return (c(Np-1, Nq-1) / N)**0.5 
[docs]def dist_mat_to_vec(N, i, j):
    """Convert distance matrix indices (in the upper triangle) to the index of
    the corresponding distance vector.
    This is a convenience function to locate distance matrix elements (and the
    pair generating it) in the corresponding distance vector. The row index *j*
    should be greater than *i+1*, corresponding to the upper triangle of the
    distance matrix.
    Parameters
    ----------
    N : int
        size of the distance matrix (of shape *N*-by-*N*)
    i : int
        row index (starting at 0) of the distance matrix
    j : int
        column index (starting at 0) of the distance matrix
    Returns
    -------
    int
        index (of the matrix element) in the corresponding distance vector
    """
    if not (isinstance(N, numbers.Integral) and isinstance(i, numbers.Integral)
            and isinstance(j, numbers.Integral)):
        raise ValueError("N, i, j all must be of type int")
    if i < 0 or j < 0 or N < 2:
        raise ValueError("Matrix indices are invalid; i and j must be greater "
                         "than 0 and N must be greater the 2")
    if (j > i and (i > N - 1 or j > N)) or (j < i and (i > N or j > N - 1)):
        raise ValueError("Matrix indices are out of range; i and j must be "
                         "less than N = {0:d}".format(N))
    if j > i:
        return (N*i) + j - (i+2)*(i+1) // 2  # old-style division for int output
    elif j < i:
        warnings.warn("Column index entered (j = {:d} is smaller than row "
                      "index (i = {:d}). Using symmetric element in upper "
                      "triangle of distance matrix instead: i --> j, "
                      "j --> i".format(j, i))
        return (N*j) + i - (j+2)*(j+1) // 2  # old-style division for int output
    else:
        raise ValueError("Error in processing matrix indices; i and j must "
                         "be integers less than integer N = {0:d} such that"
                         " j >= i+1.".format(N)) 
[docs]class Path(object):
    """Represent a path based on a :class:`~MDAnalysis.core.universe.Universe`.
    Pre-process a :class:`Universe` object: (1) fit the trajectory to a
    reference structure, (2) convert fitted time series to a
    :class:`numpy.ndarray` representation of :attr:`Path.path`.
    The analysis is performed with :meth:`PSAnalysis.run` and stores the result
    in the :class:`numpy.ndarray` distance matrix :attr:`PSAnalysis.D`.
    :meth:`PSAnalysis.run` also generates a fitted trajectory and path from
    alignment of the original trajectories to a reference structure.
    .. versionadded:: 0.9.1
    """
    def __init__(self, universe, reference, select='name CA',
                 path_select='all', ref_frame=0):
        """Setting up trajectory alignment and fitted path generation.
        Parameters
        ----------
        universe : Universe
             :class:`MDAnalysis.Universe` object containing a trajectory
        reference : Universe
             reference structure (uses `ref_frame` from the trajectory)
        select : str or dict or tuple (optional)
             The selection to operate on for rms fitting; can be one of:
             1. any valid selection string for
                :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that
                produces identical selections in *mobile* and *reference*; or
             2. a dictionary ``{'mobile':sel1, 'reference':sel2}`` (the
                :func:`MDAnalysis.analysis.align.fasta2select` function returns
                such a dictionary based on a ClustalW_ or STAMP_ sequence
                alignment); or
             3. a tuple ``(sel1, sel2)``
             When using 2. or 3. with *sel1* and *sel2* then these selections
             can also each be a list of selection strings (to generate an
             AtomGroup with defined atom order as described under
             :ref:`ordered-selections-label`).
        ref_frame : int
             frame index to select the coordinate frame from
             `select.trajectory`
        path_select : selection_string
             atom selection composing coordinates of (fitted) path; if ``None``
             then `path_select` is set to `select` [``None``]
        """
        self.u_original = universe
        self.u_reference = reference
        self.select = select
        self.ref_frame = ref_frame
        self.path_select = path_select
        self.top_name = self.u_original.filename
        self.trj_name = self.u_original.trajectory.filename
        self.newtrj_name = None
        self.u_fitted = None
        self.path = None
        self.natoms = None
[docs]    def fit_to_reference(self, filename=None, prefix='', postfix='_fit',
                         rmsdfile=None, targetdir=os.path.curdir,
                         weights=None, tol_mass=0.1):
        """Align each trajectory frame to the reference structure
        Parameters
        ----------
        filename : str (optional)
             file name for the RMS-fitted trajectory or pdb; defaults to the
             original trajectory filename (from :attr:`Path.u_original`) with
             `prefix` prepended
        prefix : str (optional)
             prefix for auto-generating the new output filename
        rmsdfile : str (optional)
             file name for writing the RMSD time series [``None``]
        weights : {"mass", ``None``} or array_like (optional)
             choose weights. With ``"mass"`` uses masses as weights; with
             ``None`` weigh each atom equally. If a float array of the same
             length as the selected AtomGroup is provided, use each element of
             the `array_like` as a weight for the corresponding atom in the
             AtomGroup.
        tol_mass : float (optional)
             Reject match if the atomic masses for matched atoms differ by more
             than `tol_mass` [0.1]
        Returns
        -------
        Universe
            :class:`MDAnalysis.Universe` object containing a fitted trajectory
        Notes
        -----
        Uses :class:`MDAnalysis.analysis.align.AlignTraj` for the fitting.
        .. deprecated:: 0.16.1
           Instead of ``mass_weighted=True`` use new ``weights='mass'``;
           refactored to fit with AnalysisBase API
        .. versionchanged:: 0.17.0
           Deprecated keyword `mass_weighted` was removed.
        """
        head, tail = os.path.split(self.trj_name)
        oldname, ext = os.path.splitext(tail)
        filename = filename or oldname
        self.newtrj_name = os.path.join(targetdir, filename + postfix + ext)
        self.u_reference.trajectory[self.ref_frame] # select frame from ref traj
        aligntrj = MDAnalysis.analysis.align.AlignTraj(self.u_original,
                                                       self.u_reference,
                                                       select=self.select,
                                                       filename=self.newtrj_name,
                                                       prefix=prefix,
                                                       weights=weights,
                                                       tol_mass=tol_mass).run()
        if rmsdfile is not None:
            aligntrj.save(rmsdfile)
        return MDAnalysis.Universe(self.top_name, self.newtrj_name) 
[docs]    def to_path(self, fitted=False, select=None, flat=False):
        r"""Generates a coordinate time series from the fitted universe
        trajectory.
        Given a selection of *N* atoms from *select*, the atomic positions for
        each frame in the fitted universe (:attr:`Path.u_fitted`) trajectory
        (with |Np| total frames) are appended sequentially to form a 3D or 2D
        (if *flat* is ``True``) :class:`numpy.ndarray` representation of the
        fitted trajectory (with dimensions |3D| or |2D|, respectively).
        Parameters
        ----------
        fitted : bool (optional)
             construct a :attr:`Path.path` from the :attr:`Path.u_fitted`
             trajectory; if ``False`` then :attr:`Path.path` is generated with
             the trajectory from :attr:`Path.u_original` [``False``]
        select : str (optional)
             the selection for constructing the coordinates of each frame in
             :attr:`Path.path`; if ``None`` then :attr:`Path.path_select`
             is used, else it is overridden by *select* [``None``]
        flat : bool (optional)
             represent :attr:`Path.path` as a 2D (|2D|) :class:`numpy.ndarray`;
             if ``False`` then :attr:`Path.path` is a 3D (|3D|)
             :class:`numpy.ndarray` [``False``]
        Returns
        -------
        numpy.ndarray
              representing a time series of atomic positions of an
              :class:`MDAnalysis.core.groups.AtomGroup` selection from
              :attr:`Path.u_fitted.trajectory`
        """
        select = select if select is not None else self.path_select
        if fitted:
            if not isinstance(self.u_fitted, MDAnalysis.Universe):
                raise TypeError("Fitted universe not found. Generate a fitted " +
                        "universe with fit_to_reference() first, or explicitly "+
                        "set argument \"fitted\" to \"False\" to generate a "   +
                        "path from the original universe.")
            u = self.u_fitted
        else:
            u = self.u_original
        frames = u.trajectory
        atoms = u.select_atoms(select)
        self.natoms = len(atoms)
        frames.rewind()
        if flat:
            return np.array([atoms.positions.flatten() for _ in frames])
        else:
            return np.array([atoms.positions for _ in frames]) 
[docs]    def run(self, align=False, filename=None, postfix='_fit', rmsdfile=None,
            targetdir=os.path.curdir, weights=None, tol_mass=0.1,
            flat=False):
        r"""Generate a path from a trajectory and reference structure.
        As part of the path generation, the trajectory can be superimposed
        ("aligned") to a reference structure if specified.
        This is a convenience method to generate a fitted trajectory from an
        inputted universe (:attr:`Path.u_original`) and reference structure
        (:attr:`Path.u_reference`). :meth:`Path.fit_to_reference` and
        :meth:`Path.to_path` are used consecutively to generate a new universe
        (:attr:`Path.u_fitted`) containing the fitted trajectory along with the
        corresponding :attr:`Path.path` represented as an
        :class:`numpy.ndarray`. The method returns a tuple of the topology name
        and new trajectory name, which can be fed directly into an
        :class:`MDAnalysis.Universe` object after unpacking the tuple using the
        ``*`` operator, as in
        ``MDAnalysis.Universe(*(top_name, newtraj_name))``.
        Parameters
        ----------
        align : bool (optional)
             Align trajectory to atom selection :attr:`Path.select` of
             :attr:`Path.u_reference`. If ``True``, a universe containing an
             aligned trajectory is produced with :meth:`Path.fit_to_reference`
             [``False``]
        filename : str (optional)
             filename for the RMS-fitted trajectory or pdb; defaults to the
             original trajectory filename (from :attr:`Path.u_original`) with
             *prefix* prepended
        postfix : str (optional)
             prefix for auto-generating the new output filename
        rmsdfile : str (optional)
             file name for writing the RMSD time series [``None``]
        weights : {"mass", ``None``} or array_like (optional)
             choose weights. With ``"mass"`` uses masses as weights; with
             ``None`` weigh each atom equally. If a float array of the same
             length as the selected AtomGroup is provided, use each element of
             the `array_like` as a weight for the corresponding atom in the
             AtomGroup.
        tol_mass : float (optional)
             Reject match if the atomic masses for matched atoms differ by more
             than *tol_mass* [0.1]
        flat : bool (optional)
             represent :attr:`Path.path` with 2D (|2D|) :class:`numpy.ndarray`;
             if ``False`` then :attr:`Path.path` is a 3D (|3D|)
             :class:`numpy.ndarray` [``False``]
        Returns
        -------
        topology_trajectory : tuple
             A tuple of the topology name and new trajectory name.
        .. deprecated:: 0.16.1
           Instead of ``mass_weighted=True`` use new ``weights='mass'``;
           refactored to fit with AnalysisBase API
        .. versionchanged:: 0.17.0
           Deprecated keyword `mass_weighted` was removed.
        """
        if align:
            self.u_fitted = self.fit_to_reference(
                                filename=filename, postfix=postfix,
                                rmsdfile=rmsdfile, targetdir=targetdir,
                                weights=weights, tol_mass=0.1)
        self.path = self.to_path(fitted=align, flat=flat)
        return self.top_name, self.newtrj_name 
[docs]    def get_num_atoms(self):
        """Return the number of atoms used to construct the :class:`Path`.
        Must run :meth:`Path.to_path` prior to calling this method.
        Returns
        -------
        int
            the number of atoms in the :class:`Path`
        """
        if self.natoms is None:
            raise ValueError("No path data; do 'Path.to_path()' first.")
        return self.natoms  
[docs]class PSAPair(object):
    """Generate nearest neighbor and Hausdorff pair information between a pair
    of paths from an all-pairs comparison generated by :class:`PSA`.
    The nearest neighbors for each path of a pair of paths is generated by
    :meth:`PSAPair.compute_nearest_neighbors` and stores the result
    in a dictionary (:attr:`nearest_neighbors`): each path has a
    :class:`numpy.ndarray` of the frames of its nearest neighbors, and a
    :class:`numpy.ndarray` of its nearest neighbor distances
    :attr:`PSAnalysis.D`. For example, *nearest_neighbors['frames']* is a pair
    of :class:`numpy.ndarray`, the first being the frames of the nearest
    neighbors of the first path, *i*, the second being those of the second path,
    *j*.
    The Hausdorff pair for the pair of paths is found by calling
    :meth:`find_hausdorff_pair` (locates the nearest neighbor pair having the
    largest overall distance separating them), which stores the result in a
    dictionary (:attr:`hausdorff_pair`) containing the frames (indices) of the
    pair along with the corresponding (Hausdorff) distance.
    *hausdorff_pair['frame']* contains a pair of frames in the first path, *i*,
    and the second path, *j*, respectively, that correspond to the Hausdorff
    distance between them.
    .. versionadded:: 0.11
    """
    def __init__(self, npaths, i, j):
        """Set up a :class:`PSAPair` for a pair of paths that are part of a
        :class:`PSA` comparison of *npaths* total paths.
        Each unique pair of paths compared using :class:`PSA` is related by
        their nearest neighbors (and corresponding distances) and the Hausdorff
        pair and distance. :class:`PSAPair` is a convenience class for
        calculating and encapsulating nearest neighbor and Hausdorff pair
        information for one pair of paths.
        Given *npaths*, :class:`PSA` performs and all-pairs comparison among all
        paths for a total of :math:`\text{npaths}*(\text{npaths}-1)/2` unique
        comparisons. If distances between paths are computed, the all-pairs
        comparison can be summarized in a symmetric distance matrix whose upper
        triangle can be mapped to a corresponding distance vector form in a
        one-to-one manner. A particular comparison of a pair of paths in a
        given instance of :class:`PSAPair` is thus unique identified by the row
        and column indices in the distance matrix representation (whether or not
        distances are actually computed), or a single ID (index) in the
        corresponding distance vector.
        Parameters
        ----------
        npaths : int
            total number of paths in :class:`PSA` used to generate *this*
            :class:`PSAPair`
        i : int
             row index (starting at 0) of the distance matrix
        j : int
             column index (starting at 0) of the distance matrix
        """
        self.npaths = npaths
        self.matrix_idx = (i,j)
        self.pair_idx = self._dvec_idx(i,j)
        # Set by calling hausdorff_nn
        self.nearest_neighbors = {'frames' : None, 'distances' : None}
        # Set by self.getHausdorffPair
        self.hausdorff_pair = {'frames' : (None, None), 'distance' : None}
    def _dvec_idx(self, i, j):
        """Convert distance matrix indices (in the upper triangle) to the index
        of the corresponding distance vector.
        This is a convenience function to locate distance matrix elements (and
        the pair generating it) in the corresponding distance vector. The row
        index *j* should be greater than *i+1*, corresponding to the upper
        triangle of the distance matrix.
        Parameters
        ----------
        i : int
            row index (starting at 0) of the distance matrix
        j : int
            column index (starting at 0) of the distance matrix
        Returns
        -------
        int
             (matrix element) index in the corresponding distance vector
        """
        return (self.npaths*i) + j - (i+2)*(i+1)/2
    def compute_nearest_neighbors(self, P,Q, N=None):
        """Generates Hausdorff nearest neighbor lists of *frames* (by index) and
        *distances* for *this* pair of paths corresponding to distance matrix
        indices (*i*,*j*).
        :meth:`PSAPair.compute_nearest_neighbors` calls
        :func:`hausdorff_neighbors` to populate the dictionary of the nearest
        neighbor lists of frames (by index) and distances
        (:attr:`PSAPair.nearest_neighbors`). This method must explicitly take as
        arguments a pair of paths, *P* and *Q*, where *P* is the
        :math:`i^\text{th}` path and *Q* is the :math:`j^\text{th}` path among
        the set of *N* total paths in the comparison.
        Parameters
        ----------
        P : numpy.ndarray
            representing a path
        Q : numpy.ndarray
            representing a path
        N : int
            size of the distance matrix (of shape *N*-by-*N*) [``None``]
        """
        hn = hausdorff_neighbors(P, Q)
        self.nearest_neighbors['frames'] = hn['frames']
        self.nearest_neighbors['distances'] = hn['distances']
    def find_hausdorff_pair(self):
        r"""Find the Hausdorff pair (of frames) for *this* pair of paths.
        :meth:`PSAPair.find_hausdorff_pair` requires that
        `:meth:`PSAPair.compute_nearest_neighbors` be called first to
        generate the nearest neighbors (and corresponding distances) for each
        path in *this* :class:`PSAPair`. The Hausdorff pair is the nearest
        neighbor pair (of snapshots/frames), one in the first path and one in
        the second, with the largest separation distance.
        """
        if self.nearest_neighbors['distances'] is None:
            raise NoDataError("Nearest neighbors have not been calculated yet;"
                              " run compute_nearest_neighbors() first.")
        nn_idx_P, nn_idx_Q = self.nearest_neighbors['frames']
        nn_dist_P, nn_dist_Q = self.nearest_neighbors['distances']
        max_nn_dist_P = max(nn_dist_P)
        max_nn_dist_Q = max(nn_dist_Q)
        if max_nn_dist_P > max_nn_dist_Q:
            max_nn_idx_P = np.argmax(nn_dist_P)
            self.hausdorff_pair['frames'] = max_nn_idx_P, nn_idx_P[max_nn_idx_P]
            self.hausdorff_pair['distance']  = max_nn_dist_P
        else:
            max_nn_idx_Q = np.argmax(nn_dist_Q)
            self.hausdorff_pair['frames'] = nn_idx_Q[max_nn_idx_Q], max_nn_idx_Q
            self.hausdorff_pair['distance'] = max_nn_dist_Q
    def get_nearest_neighbors(self, frames=True, distances=True):
        """Returns the nearest neighbor frame indices, distances, or both, for
        each path in *this* :class:`PSAPair`.
        :meth:`PSAPair.get_nearest_neighbors` requires that the nearest
        neighbors (:attr:`nearest_neighbors`) be initially computed by first
        calling :meth:`compute_nearest_neighbors`. At least one of *frames*
        or *distances* must be ``True``, or else a ``NoDataError`` is raised.
        Parameters
        ----------
        frames :  bool
             if ``True``, return nearest neighbor frame indices
             [``True``]
         distances : bool
             if ``True``, return nearest neighbor distances [``True``]
        Returns
        -------
        dict or tuple
             If both *frames* and *distances* are ``True``, return the entire
             dictionary (:attr:`nearest_neighbors`); if only *frames* is
             ``True``, return a pair of :class:`numpy.ndarray` containing the
             indices of the frames (for the pair of paths) of the nearest
             neighbors; if only *distances* is ``True``, return a pair of
             :class:`numpy.ndarray` of the nearest neighbor distances (for the
             pair of paths).
        """
        if self.nearest_neighbors['distances'] is None:
            raise NoDataError("Nearest neighbors have not been calculated yet;"
                              " run compute_nearest_neighbors() first.")
        if frames:
            if distances:
                return self.nearest_neighbors
            else:
                return self.nearest_neighbors['frames']
        elif distances:
            return self.nearest_neighbors['distances']
        else:
            raise NoDataError('Need to select Hausdorff pair "frames" or'
                              ' "distances" or both. "frames" and "distances"'
                              ' cannot both be set to False.')
    def get_hausdorff_pair(self, frames=True, distance=True):
        """Returns the Hausdorff pair of frames indices, the Hausdorff distance,
        or both, for the paths in *this* :class:`PSAPair`.
        :meth:`PSAPair.get_hausdorff_pair` requires that the Hausdorff pair
        (and distance) be initially found by first calling
        :meth:`find_hausdorff_pair`. At least one of *frames* or *distance*
        must be ``True``, or else a ``NoDataError`` is raised.
        Parameters
        ----------
        frames : bool
             if ``True``, return the indices of the frames
             of the Hausdorff pair [``True``]
        distances : bool
             if ``True``, return Hausdorff distance [``True``]
        Returns
        -------
        dict or tuple
             If both *frames* and *distance* are ``True``, return the entire
             dictionary (:attr:`hausdorff_pair`); if only *frames* is
             ``True``, return a pair of ``int`` containing the indices of the
             frames (one index per path) of the Hausdorff pair; if only *distance*
             is ``True``, return the Hausdorff distance for this path pair.
        """
        if self.hausdorff_pair['distance'] is None:
            raise NoDataError("Hausdorff pair has not been calculated yet;"
                              " run find_hausdorff_pair() first.")
        if frames:
            if distance:
                return self.hausdorff_pair
            else:
                return self.hausdorff_pair['frames']
        elif distance:
            return self.hausdorff_pair['distance']
        else:
            raise NoDataError('Need to select Hausdorff pair "frames" or'
                              ' "distance" or both. "frames" and "distance"'
                              ' cannot both be set to False.') 
[docs]class PSAnalysis(object):
    """Perform Path Similarity Analysis (PSA) on a set of trajectories.
    The analysis is performed with :meth:`PSAnalysis.run` and stores the result
    in the :class:`numpy.ndarray` distance matrix :attr:`PSAnalysis.D`.
    :meth:`PSAnalysis.run` also generates a fitted trajectory and path from
    alignment of the original trajectories to a reference structure.
    .. versionadded:: 0.8
    .. versionchanged:: 1.0.0
       ``save_result()`` method has been removed. You can use ``np.save()`` on
       :attr:`PSAnalysis.D` instead.
    """
    def __init__(self, universes, reference=None, select='name CA',
                 ref_frame=0, path_select=None, labels=None,
                 targetdir=os.path.curdir):
        """Setting up Path Similarity Analysis.
        The mutual similarity between all unique pairs of trajectories
        are computed using a selected path metric.
        Parameters
        ----------
        universes : list
             a list of universes (:class:`MDAnalysis.Universe` object), each
             containing a trajectory
        reference : Universe
             reference coordinates; :class:`MDAnalysis.Universe` object; if
             ``None`` the first time step of the first item in `universes` is used
             [``None``]
        select : str or dict or tuple
             The selection to operate on; can be one of:
             1. any valid selection string for
                :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that
                produces identical selections in *mobile* and *reference*; or
             2. a dictionary ``{'mobile':sel1, 'reference':sel2}`` (the
                :func:`MDAnalysis.analysis.align.fasta2select` function returns
                such a dictionary based on a ClustalW_ or STAMP_ sequence
                alignment); or
             3. a tuple ``(sel1, sel2)``
             When using 2. or 3. with *sel1* and *sel2* then these selections
             can also each be a list of selection strings (to generate an
             AtomGroup with defined atom order as described under
             :ref:`ordered-selections-label`).
        tol_mass : float
             Reject match if the atomic masses for matched atoms differ by more
             than *tol_mass* [0.1]
        ref_frame : int
             frame index to select frame from *reference* [0]
        path_select : str
             atom selection composing coordinates of (fitted) path; if ``None``
             then *path_select* is set to *select* [``None``]
        targetdir : str
            output files are saved there; if ``None`` then "./psadata" is
            created and used [.]
        labels : list
             list of strings, names of trajectories to be analyzed
             (:class:`MDAnalysis.Universe`); if ``None``, defaults to trajectory
             names [``None``]
        .. _ClustalW: http://www.clustal.org/
        .. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/
        """
        self.universes = universes
        self.u_reference = self.universes[0] if reference is None else reference
        self.select = select
        self.ref_frame = ref_frame
        self.path_select = self.select if path_select is None else path_select
        if targetdir is None:
            try:
                targetdir = os.path.join(os.path.curdir, 'psadata')
                os.makedirs(targetdir)
            except OSError:
                if not os.path.isdir(targetdir):
                    raise
        self.targetdir = os.path.realpath(targetdir)
        # Set default directory names for storing topology/reference structures,
        # fitted trajectories, paths, distance matrices, and plots
        self.datadirs = {'fitted_trajs' : 'fitted_trajs',
                         'paths' : 'paths',
                         'distance_matrices' : 'distance_matrices',
                         'plots' : 'plots'}
        for dir_name, directory in self.datadirs.items():
            try:
                full_dir_name = os.path.join(self.targetdir, dir_name)
                os.makedirs(full_dir_name)
            except OSError:
                if not os.path.isdir(full_dir_name):
                    raise
        # Keep track of topology, trajectory, and related files
        trj_names = []
        for i, u in enumerate(self.universes):
            head, tail = os.path.split(u.trajectory.filename)
            filename, ext = os.path.splitext(tail)
            trj_names.append(filename)
        self.trj_names = trj_names
        self.fit_trj_names = None
        self.path_names = None
        self.top_name = self.universes[0].filename if len(universes) != 0 else None
        self.labels = labels or self.trj_names
        # Names of persistence (pickle) files where topology and trajectory
        # filenames are stored--should not be modified by user
        self._top_pkl = os.path.join(self.targetdir, "psa_top-name.pkl")
        self._trjs_pkl = os.path.join(self.targetdir, "psa_orig-traj-names.pkl")
        self._fit_trjs_pkl = os.path.join(self.targetdir, "psa_fitted-traj-names.pkl")
        self._paths_pkl = os.path.join(self.targetdir, "psa_path-names.pkl")
        self._labels_pkl = os.path.join(self.targetdir, "psa_labels.pkl")
        # Pickle topology and trajectory filenames for this analysis to curdir
        with open(self._top_pkl, 'wb') as output:
            pickle.dump(self.top_name, output)
        with open(self._trjs_pkl, 'wb') as output:
            pickle.dump(self.trj_names, output)
        with open(self._labels_pkl, 'wb') as output:
            pickle.dump(self.labels, output)
        self.natoms = None
        self.npaths = None
        self.paths = None
        self.D = None   # pairwise distances
        self._HP = None # (distance vector order) list of all Hausdorff pairs
        self._NN = None # (distance vector order) list of all nearest neighbors
        self._psa_pairs = None # (distance vector order) list of all PSAPairs
[docs]    def generate_paths(self, align=False, filename=None, infix='', weights=None,
                       tol_mass=False, ref_frame=None, flat=False, save=True, store=False):
        """Generate paths, aligning each to reference structure if necessary.
        Parameters
        ----------
        align : bool
             Align trajectories to atom selection :attr:`PSAnalysis.select`
             of :attr:`PSAnalysis.u_reference` [``False``]
        filename : str
             strings representing base filename for fitted trajectories and
             paths [``None``]
        infix : str
             additional tag string that is inserted into the output filename of
             the fitted trajectory files ['']
        weights : {"mass", ``None``} or array_like (optional)
             choose weights. With ``"mass"`` uses masses as weights; with
             ``None`` weigh each atom equally. If a float array of the same
             length as the selected AtomGroup is provided, use each element of
             the `array_like` as a weight for the corresponding atom in the
             AtomGroup [``None``]
        tol_mass : float
             Reject match if the atomic masses for matched atoms differ by more
             than *tol_mass* [``False``]
        ref_frame : int
             frame index to select frame from *reference* [``None``]
        flat : bool
             represent :attr:`Path.path` as a 2D (|2D|) :class:`numpy.ndarray`;
             if ``False`` then :attr:`Path.path` is a 3D (|3D|)
             :class:`numpy.ndarray` [``False``]
        save : bool
             if ``True``, pickle list of names for fitted trajectories
             [``True``]
        store : bool
             if ``True`` then writes each path (:class:`numpy.ndarray`)
             in :attr:`PSAnalysis.paths` to compressed npz (numpy) files
             [``False``]
        The fitted trajectories are written to new files in the
        "/trj_fit" subdirectory in :attr:`PSAnalysis.targetdir` named
        "filename(*trajectory*)XXX*infix*_psa", where "XXX" is a number between
        000 and 999; the extension of each file is the same as its original.
        Optionally, the trajectories can also be saved in numpy compressed npz
        format in the "/paths" subdirectory in :attr:`PSAnalysis.targetdir` for
        persistence and can be accessed as the attribute
        :attr:`PSAnalysis.paths`.
        .. deprecated:: 0.16.1
           Instead of ``mass_weighted=True`` use new ``weights='mass'``;
           refactored to fit with AnalysisBase API
        .. versionchanged:: 0.17.0
           Deprecated keyword `mass_weighted` was removed.
        .. versionchanged:: 1.0.0
           Defaults for the `store` and `filename` keywords have been changed
           from `True` and `fitted` to `False` and `None` respectively. These
           now match the docstring documented defaults.
        """
        if ref_frame is None:
            ref_frame = self.ref_frame
        paths = []
        fit_trj_names = []
        for i, u in enumerate(self.universes):
            p = Path(u, self.u_reference, select=self.select,
                     path_select=self.path_select, ref_frame=ref_frame)
            trj_dir = os.path.join(self.targetdir, self.datadirs['fitted_trajs'])
            postfix = '{0}{1}{2:03n}'.format(infix, '_psa', i+1)
            top_name, fit_trj_name = p.run(align=align, filename=filename,
                                           postfix=postfix,
                                           targetdir=trj_dir,
                                           weights=weights,
                                           tol_mass=tol_mass, flat=flat)
            paths.append(p.path)
            fit_trj_names.append(fit_trj_name)
        self.natoms, axis = get_coord_axes(paths[0])
        self.paths = paths
        self.npaths = len(paths)
        self.fit_trj_names = fit_trj_names
        if save:
            with open(self._fit_trjs_pkl, 'wb') as output:
                pickle.dump(self.fit_trj_names, output)
        if store:
            self.save_paths(filename=filename) 
[docs]    def run(self, **kwargs):
        """Perform path similarity analysis on the trajectories to compute
        the distance matrix.
        A number of parameters can be changed from the defaults. The
        result is stored as the array :attr:`PSAnalysis.D`.
        Parameters
        ----------
        metric : str or callable
             selection string specifying the path metric to measure pairwise
             distances among :attr:`PSAnalysis.paths` or a callable with the
             same call signature as :func:`hausdorff`
             [``'hausdorff'``]
        start : int
             `start` and `stop` frame index with `step` size: analyze
             ``trajectory[start:stop:step]`` [``None``]
        stop : int
        step : int
        .. versionchanged:: 1.0.0
           `store` and `filename` have been removed.
        """
        metric = kwargs.pop('metric', 'hausdorff')
        start = kwargs.pop('start', None)
        stop = kwargs.pop('stop', None)
        step = kwargs.pop('step', None)
        if isinstance(metric, str):
            metric_func = get_path_metric_func(str(metric))
        else:
            metric_func = metric
        numpaths = self.npaths
        D = np.zeros((numpaths,numpaths))
        for i in range(0, numpaths-1):
            for j in range(i+1, numpaths):
                P = self.paths[i][start:stop:step]
                Q = self.paths[j][start:stop:step]
                D[i,j] = metric_func(P, Q)
                D[j,i] = D[i,j]
        self.D = D 
[docs]    def run_pairs_analysis(self, **kwargs):
        """Perform PSA Hausdorff (nearest neighbor) pairs analysis on all unique
        pairs of paths in :attr:`PSAnalysis.paths`.
        Partial results can be stored in separate lists, where each list is
        indexed according to distance vector convention (i.e., element *(i,j)*
        in distance matrix representation corresponds to element
        :math:`s=N*i+j-(i+1)*(i+2)` in distance vector representation, which is
        the :math:`s^\text{th}` comparison). For each unique pair of paths, the
        nearest neighbors for that pair can be stored in :attr:`NN` and the
        Hausdorff pair in :attr:`HP`. :attr:`PP` stores the full information
        of Hausdorff pairs analysis that is available for each pair of path,
        including nearest neighbors lists and the Hausdorff pairs.
        The pairwise distances are stored as the array :attr:`PSAnalysis.D`.
        Parameters
        ----------
        start : int
             `start` and `stop` frame index with `step` size: analyze
             ``trajectory[start:stop:step]`` [``None``]
        stop : int
        step : int
        neighbors : bool
             if ``True``, then stores dictionary of nearest neighbor
             frames/distances in :attr:`PSAnalysis.NN` [``False``]
        hausdorff_pairs : bool
             if ``True``, then stores dictionary of Hausdorff pair
             frames/distances in :attr:`PSAnalysis.HP` [``False``]
        """
        start = kwargs.pop('start', None)
        stop = kwargs.pop('stop', None)
        step = kwargs.pop('step', None)
        neighbors = kwargs.pop('neighbors', False)
        hausdorff_pairs = kwargs.pop('hausdorff_pairs', False)
        numpaths = self.npaths
        D = np.zeros((numpaths,numpaths))
        self._NN = [] # list of nearest neighbors pairs
        self._HP = [] # list of Hausdorff pairs
        self._psa_pairs = [] # list of PSAPairs
        for i in range(0, numpaths-1):
            for j in range(i+1, numpaths):
                pp = PSAPair(i, j, numpaths)
                P = self.paths[i][start:stop:step]
                Q = self.paths[j][start:stop:step]
                pp.compute_nearest_neighbors(P, Q, self.natoms)
                pp.find_hausdorff_pair()
                D[i,j] = pp.hausdorff_pair['distance']
                D[j,i] = D[i,j]
                self._psa_pairs.append(pp)
                if neighbors:
                    self._NN.append(pp.get_nearest_neighbors())
                if hausdorff_pairs:
                    self._HP.append(pp.get_hausdorff_pair())
        self.D = D 
[docs]    def save_paths(self, filename=None):
        """Save fitted :attr:`PSAnalysis.paths` to numpy compressed npz files.
        The data are saved with :func:`numpy.savez_compressed` in the directory
        specified by :attr:`PSAnalysis.targetdir`.
        Parameters
        ----------
        filename : str
             specifies filename [``None``]
        Returns
        -------
        filename : str
        See Also
        --------
        load
        """
        filename = filename or 'path_psa'
        head = os.path.join(self.targetdir, self.datadirs['paths'])
        outfile = os.path.join(head, filename)
        if self.paths is None:
            raise NoDataError("Paths have not been calculated yet")
        path_names = []
        for i, path in enumerate(self.paths):
            current_outfile = "{0}{1:03n}.npy".format(outfile, i+1)
            np.save(current_outfile, self.paths[i])
            path_names.append(current_outfile)
            logger.info("Wrote path to file %r", current_outfile)
        self.path_names = path_names
        with open(self._paths_pkl, 'wb') as output:
            pickle.dump(self.path_names, output)
        return filename 
[docs]    def load(self):
        """Load fitted paths specified by 'psa_path-names.pkl' in
        :attr:`PSAnalysis.targetdir`.
        All filenames are determined by :class:`PSAnalysis`.
        See Also
        --------
        save_paths
        """
        if not os.path.exists(self._paths_pkl):
            raise NoDataError("Fitted trajectories cannot be loaded; save file" +
                              "{0} does not exist.".format(self._paths_pkl))
        self.path_names = np.load(self._paths_pkl, allow_pickle=True)
        self.paths = [np.load(pname) for pname in self.path_names]
        if os.path.exists(self._labels_pkl):
            self.labels = np.load(self._labels_pkl, allow_pickle=True)
        logger.info("Loaded paths from %r", self._paths_pkl) 
[docs]    def plot(self, filename=None, linkage='ward', count_sort=False,
             distance_sort=False, figsize=4.5, labelsize=12):
        """Plot a clustered distance matrix.
        Usese method *linkage* and plots the corresponding dendrogram. Rows
        (and columns) are identified using the list of strings specified by
        :attr:`PSAnalysis.labels`.
        If `filename` is supplied then the figure is also written to file (the
        suffix determines the file type, e.g. pdf, png, eps, ...). All other
        keyword arguments are passed on to :func:`matplotlib.pyplot.matshow`.
        Parameters
        ----------
        filename : str
             save figure to *filename* [``None``]
        linkage : str
             name of linkage criterion for clustering [``'ward'``]
        count_sort : bool
             see :func:`scipy.cluster.hierarchy.dendrogram` [``False``]
        distance_sort : bool
             see :func:`scipy.cluster.hierarchy.dendrogram` [``False``]
        figsize : float
             set the vertical size of plot in inches [``4.5``]
        labelsize : float
             set the font size for colorbar labels; font size for path labels on
             dendrogram default to 3 points smaller [``12``]
        Returns
        -------
        Z
          `Z` from :meth:`cluster`
        dgram
          `dgram` from :meth:`cluster`
        dist_matrix_clus
          clustered distance matrix (reordered)
        .. versionchanged:: 1.0.0
            :attr:`tick1On`, :attr:`tick2On`, :attr:`label1On` and :attr:`label2On`
            changed to :attr:`tick1line`, :attr:`tick2line`, :attr:`label1` and
            :attr:`label2` due to upstream deprecation (see #2493)
        """
        from matplotlib.pyplot import figure, colorbar, cm, savefig, clf
        if self.D is None:
            raise ValueError(
                "No distance data; do 'PSAnalysis.run()' first.")
        npaths = len(self.D)
        dist_matrix = self.D
        dgram_loc, hmap_loc, cbar_loc = self._get_plot_obj_locs()
        aspect_ratio = 1.25
        clf()
        fig = figure(figsize=(figsize*aspect_ratio, figsize))
        ax_hmap = fig.add_axes(hmap_loc)
        ax_dgram = fig.add_axes(dgram_loc)
        Z, dgram = self.cluster(method=linkage,                                 \
                                
count_sort=count_sort,                          \
                                
distance_sort=distance_sort)
        rowidx = colidx = dgram['leaves'] # get row-wise ordering from clustering
        ax_dgram.invert_yaxis() # Place origin at up left (from low left)
        minDist, maxDist = 0, np.max(dist_matrix)
        dist_matrix_clus = dist_matrix[rowidx,:]
        dist_matrix_clus = dist_matrix_clus[:,colidx]
        im = ax_hmap.matshow(dist_matrix_clus, aspect='auto', origin='lower',   \
                    
cmap=cm.YlGn, vmin=minDist, vmax=maxDist)
        ax_hmap.invert_yaxis() # Place origin at upper left (from lower left)
        ax_hmap.locator_params(nbins=npaths)
        ax_hmap.set_xticks(np.arange(npaths), minor=True)
        ax_hmap.set_yticks(np.arange(npaths), minor=True)
        ax_hmap.tick_params(axis='x', which='both', labelleft='off',            \
                        
labelright='off', labeltop='on', labelsize=0)
        ax_hmap.tick_params(axis='y', which='both', labelleft='on',             \
                
labelright='off', labeltop='off', labelsize=0)
        rowlabels = [self.labels[i] for i in rowidx]
        collabels = [self.labels[i] for i in colidx]
        ax_hmap.set_xticklabels(collabels, rotation='vertical',                 \
                
size=(labelsize-4), multialignment='center', minor=True)
        ax_hmap.set_yticklabels(rowlabels, rotation='horizontal',               \
                
size=(labelsize-4), multialignment='left', ha='right',          \
                
minor=True)
        ax_color = fig.add_axes(cbar_loc)
        colorbar(im, cax=ax_color, ticks=np.linspace(minDist, maxDist, 10),  \
                
format="%0.1f")
        ax_color.tick_params(labelsize=labelsize)
        # Remove major ticks and labels from both heat map axes
        for tic in ax_hmap.xaxis.get_major_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
            tic.label1.set_visible(False)
            tic.label2.set_visible(False)
        for tic in ax_hmap.yaxis.get_major_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
            tic.label1.set_visible(False)
            tic.label2.set_visible(False)
        # Remove minor ticks from both heat map axes
        for tic in ax_hmap.xaxis.get_minor_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
        for tic in ax_hmap.yaxis.get_minor_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
        # Remove tickmarks from colorbar
        for tic in ax_color.yaxis.get_major_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
        if filename is not None:
            head = os.path.join(self.targetdir, self.datadirs['plots'])
            outfile = os.path.join(head, filename)
            savefig(outfile, dpi=300, bbox_inches='tight')
        return Z, dgram, dist_matrix_clus 
[docs]    def plot_annotated_heatmap(self, filename=None, linkage='ward',             \
                               
count_sort=False, distance_sort=False,           \
                               
figsize=8, annot_size=6.5):
        """Plot a clustered distance matrix.
        Uses method `linkage` and plots annotated distances in the matrix. Rows
        (and columns) are identified using the list of strings specified by
        :attr:`PSAnalysis.labels`.
        If `filename` is supplied then the figure is also written to file (the
        suffix determines the file type, e.g. pdf, png, eps, ...). All other
        keyword arguments are passed on to :func:`matplotlib.pyplot.imshow`.
        Parameters
        ----------
        filename : str
             save figure to *filename* [``None``]
        linkage : str
             name of linkage criterion for clustering [``'ward'``]
        count_sort : bool
             see :func:`scipy.cluster.hierarchy.dendrogram` [``False``]
        distance_sort : bool
             see :func:`scipy.cluster.hierarchy.dendrogram` [``False``]
        figsize : float
             set the vertical size of plot in inches [``4.5``]
        annot_size : float
             font size of annotation labels on heat map [``6.5``]
        Returns
        -------
        Z
          `Z` from :meth:`cluster`
        dgram
          `dgram` from :meth:`cluster`
        dist_matrix_clus
          clustered distance matrix (reordered)
        Note
        ----
        This function requires the seaborn_ package, which can be installed
        with `pip install seaborn` or `conda install seaborn`.
        .. _seaborn: https://seaborn.pydata.org/
        .. versionchanged:: 1.0.0
            :attr:`tick1On`, :attr:`tick2On`, :attr:`label1On` and :attr:`label2On`
            changed to :attr:`tick1line`, :attr:`tick2line`, :attr:`label1` and
            :attr:`label2` due to upstream deprecation (see #2493)
        """
        from matplotlib.pyplot import figure, colorbar, cm, savefig, clf
        try:
            import seaborn as sns
        except ImportError:
            raise ImportError(
                """ERROR --- The seaborn package cannot be found!
                The seaborn API could not be imported. Please install it first.
                You can try installing with pip directly from the
                internet:
                  pip install seaborn
                Alternatively, download the package from
                  http://pypi.python.org/pypi/seaborn/
                and install in the usual manner.
                """
                ) from None
        if self.D is None:
            raise ValueError(
                "No distance data; do 'PSAnalysis.run()' first.")
        dist_matrix = self.D
        Z, dgram = self.cluster(method=linkage,                                 \
                                
count_sort=count_sort,                          \
                                
distance_sort=distance_sort,                    \
                                
no_plot=True)
        rowidx = colidx = dgram['leaves'] # get row-wise ordering from clustering
        dist_matrix_clus = dist_matrix[rowidx,:]
        dist_matrix_clus = dist_matrix_clus[:,colidx]
        clf()
        aspect_ratio = 1.25
        fig = figure(figsize=(figsize*aspect_ratio, figsize))
        ax_hmap = fig.add_subplot(111)
        ax_hmap = sns.heatmap(dist_matrix_clus,                                 \
                         
linewidths=0.25, cmap=cm.YlGn, annot=True, fmt='3.1f', \
                         
square=True, xticklabels=rowidx, yticklabels=colidx,   \
                         
annot_kws={"size": 7}, ax=ax_hmap)
        # Remove major ticks from both heat map axes
        for tic in ax_hmap.xaxis.get_major_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
            tic.label1.set_visible(False)
            tic.label2.set_visible(False)
        for tic in ax_hmap.yaxis.get_major_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
            tic.label1.set_visible(False)
            tic.label2.set_visible(False)
        # Remove minor ticks from both heat map axes
        for tic in ax_hmap.xaxis.get_minor_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
        for tic in ax_hmap.yaxis.get_minor_ticks():
            tic.tick1line.set_visible(False)
            tic.tick2line.set_visible(False)
        if filename is not None:
            head = os.path.join(self.targetdir, self.datadirs['plots'])
            outfile = os.path.join(head, filename)
            savefig(outfile, dpi=600, bbox_inches='tight')
        return Z, dgram, dist_matrix_clus 
[docs]    def plot_nearest_neighbors(self, filename=None, idx=0,                      \
                               
labels=('Path 1', 'Path 2'), figsize=4.5,        \
                               
multiplot=False, aspect_ratio=1.75,              \
                               
labelsize=12):
        """Plot nearest neighbor distances as a function of normalized frame
        number.
        The frame number is mapped to the interval *[0, 1]*.
        If `filename` is supplied then the figure is also written to file (the
        suffix determines the file type, e.g. pdf, png, eps, ...). All other
        keyword arguments are passed on to :func:`matplotlib.pyplot.imshow`.
        Parameters
        ----------
        filename : str
             save figure to *filename* [``None``]
        idx : int
             index of path (pair) comparison to plot [``0``]
        labels : (str, str)
             pair of names to label nearest neighbor distance
             curves [``('Path 1', 'Path 2')``]
        figsize : float
             set the vertical size of plot in inches [``4.5``]
        multiplot : bool
             set to ``True`` to enable plotting multiple nearest
             neighbor distances on the same figure [``False``]
        aspect_ratio : float
             set the ratio of width to height of the plot [``1.75``]
        labelsize : float
             set the font size for colorbar labels; font size for path labels on
             dendrogram default to 3 points smaller [``12``]
        Returns
        -------
        ax : axes
        Note
        ----
        This function requires the seaborn_ package, which can be installed
        with `pip install seaborn` or `conda install seaborn`.
        .. _seaborn: https://seaborn.pydata.org/
        """
        from matplotlib.pyplot import figure, savefig, tight_layout, clf, show
        try:
            import seaborn as sns
        except ImportError:
            raise ImportError(
                """ERROR --- The seaborn package cannot be found!
                The seaborn API could not be imported. Please install it first.
                You can try installing with pip directly from the
                internet:
                  pip install seaborn
                Alternatively, download the package from
                  http://pypi.python.org/pypi/seaborn/
                and install in the usual manner.
                """
                ) from None
        colors = sns.xkcd_palette(["cherry", "windows blue"])
        if self._NN is None:
            raise ValueError("No nearest neighbor data; run "
                             "'PSAnalysis.run_pairs_analysis(neighbors=True)' first.")
        sns.set_style('whitegrid')
        if not multiplot:
            clf()
        fig = figure(figsize=(figsize*aspect_ratio, figsize))
        ax = fig.add_subplot(111)
        nn_dist_P, nn_dist_Q = self._NN[idx]['distances']
        frames_P = len(nn_dist_P)
        frames_Q = len(nn_dist_Q)
        progress_P = np.asarray(range(frames_P))/(1.0*frames_P)
        progress_Q = np.asarray(range(frames_Q))/(1.0*frames_Q)
        ax.plot(progress_P, nn_dist_P, color=colors[0], lw=1.5, label=labels[0])
        ax.plot(progress_Q, nn_dist_Q, color=colors[1], lw=1.5, label=labels[1])
        ax.legend()
        ax.set_xlabel(r'(normalized) progress by frame number', fontsize=12)
        ax.set_ylabel(r'nearest neighbor rmsd ($\AA$)', fontsize=12)
        ax.tick_params(axis='both', which='major', labelsize=12, pad=4)
        sns.despine(bottom=True, left=True, ax=ax)
        tight_layout()
        if filename is not None:
            head = os.path.join(self.targetdir, self.datadirs['plots'])
            outfile = os.path.join(head, filename)
            savefig(outfile, dpi=300, bbox_inches='tight')
        return ax 
[docs]    def cluster(self, dist_mat=None, method='ward', count_sort=False,           \
                
distance_sort=False, no_plot=False, no_labels=True,             \
                
color_threshold=4):
        """Cluster trajectories and optionally plot the dendrogram.
        This method is used by :meth:`PSAnalysis.plot` to generate a heatmap-
        dendrogram combination plot. By default, the distance matrix,
        :attr:`PSAnalysis.D`, is assumed to exist, converted to
        distance-vector form, and inputted to :func:`cluster.hierarchy.linkage`
        to generate a clustering. For convenience in plotting arbitrary
        distance matrices, one can also be specify `dist_mat`, which will be
        checked for proper distance matrix form by
        :func:`spatial.distance.squareform`
        Parameters
        ----------
        dist_mat : numpy.ndarray
            user-specified distance matrix to be clustered [``None``]
        method : str
            name of linkage criterion for clustering [``'ward'``]
        no_plot : bool
            if ``True``, do not render the dendrogram [``False``]
        no_labels : bool
            if ``True`` then do not label dendrogram [``True``]
        color_threshold : float
            For brevity, let t be the color_threshold. Colors all the
            descendent links below a cluster node k the same color if k is
            the first node below the cut threshold t. All links connecting
            nodes with distances greater than or equal to the threshold are
            colored blue. If t is less than or equal to zero, all nodes are
            colored blue. If color_threshold is None or ‘default’,
            corresponding with MATLAB(TM) behavior, the threshold is set to
            0.7*max(Z[:,2]). [``4``]]
        Returns
        -------
        Z
            output from :func:`scipy.cluster.hierarchy.linkage`;
            list of indices representing the row-wise order of the objects
            after clustering
        dgram
            output from :func:`scipy.cluster.hierarchy.dendrogram`
        """
        # perhaps there is a better way to manipulate the plot... or perhaps it
        # is not even necessary? In any case, the try/finally makes sure that
        # we are not permanently changing the user's global state
        orig_linewidth = matplotlib.rcParams['lines.linewidth']
        matplotlib.rcParams['lines.linewidth'] = 0.5
        try:
            if dist_mat:
                dist_vec = spatial.distance.squareform(dist_mat,
                                                       force='tovector',
                                                       checks=True)
            else:
                dist_vec = self.get_pairwise_distances(vectorform=True)
            Z = cluster.hierarchy.linkage(dist_vec, method=method)
            dgram = cluster.hierarchy.dendrogram(
                Z, no_labels=no_labels, orientation='left',
                count_sort=count_sort, distance_sort=distance_sort,
                no_plot=no_plot, color_threshold=color_threshold)
        finally:
            matplotlib.rcParams['lines.linewidth'] = orig_linewidth
        return Z, dgram 
    def _get_plot_obj_locs(self):
        """Find and return coordinates for dendrogram, heat map, and colorbar.
        Returns
        -------
        tuple
          tuple of coordinates for placing the dendrogram, heat map, and
          colorbar in the plot.
        """
        plot_xstart = 0.04
        plot_ystart = 0.04
        label_margin = 0.155
        dgram_height = 0.2 # dendrogram heights(s)
        hmap_xstart = plot_xstart + dgram_height + label_margin
        # Set locations for dendrogram(s), matrix, and colorbar
        hmap_height = 0.8
        hmap_width = 0.6
        dgram_loc = [plot_xstart, plot_ystart, dgram_height, hmap_height]
        cbar_width = 0.02
        cbar_xstart = hmap_xstart + hmap_width + 0.01
        cbar_loc = [cbar_xstart, plot_ystart, cbar_width, hmap_height]
        hmap_loc =  [hmap_xstart, plot_ystart, hmap_width, hmap_height]
        return dgram_loc, hmap_loc, cbar_loc
[docs]    def get_num_atoms(self):
        """Return the number of atoms used to construct the :class:`Path` instances in
        :class:`PSA`.
        Returns
        -------
        int
            the number of atoms in any path
        Note
        ----
        Must run :meth:`PSAnalysis.generate_paths` prior to calling this
        method.
        """
        if self.natoms is None:
            raise ValueError(
                "No path data; do 'PSAnalysis.generate_paths()' first.")
        return self.natoms 
[docs]    def get_num_paths(self):
        """Return the number of paths in :class:`PSA`.
        Note
        ----
        Must run :meth:`PSAnalysis.generate_paths` prior to calling this method.
        Returns
        -------
        int
           the number of paths in :class:`PSA`
        """
        if self.npaths is None:
            raise ValueError(
                "No path data; do 'PSAnalysis.generate_paths()' first.")
        return self.npaths 
[docs]    def get_paths(self):
        """Return the paths in :class:`PSA`.
        Note
        ----
        Must run :meth:`PSAnalysis.generate_paths` prior to calling this
        method.
        Returns
        -------
        list
            list of :class:`numpy.ndarray` representations of paths in
            :class:`PSA`
        """
        if self.paths is None:
            raise ValueError(
                "No path data; do 'PSAnalysis.generate_paths()' first.")
        return self.paths 
[docs]    def get_pairwise_distances(self, vectorform=False, checks=False):
        """Return the distance matrix (or vector) of pairwise path distances.
        Note
        ----
        Must run :meth:`PSAnalysis.run` prior to calling this method.
        Parameters
        ----------
        vectorform : bool
             if ``True``, return the distance vector instead [``False``]
        checks : bool
             if ``True``, check that :attr:`PSAnalysis.D` is a proper distance
             matrix [``False``]
        Returns
        -------
        numpy.ndarray
             representation of the distance matrix (or vector)
        """
        if self.D is None:
            raise ValueError(
                "No distance data; do 'PSAnalysis.run()' first.")
        if vectorform:
            return spatial.distance.squareform(self.D, force='tovector',
                                               checks=checks)
        else:
            return self.D 
    @property
    def psa_pairs(self):
        """The list of :class:`PSAPair` instances for each pair of paths.
        :attr:`psa_pairs` is a list of all :class:`PSAPair` objects (in
        distance vector order). The elements of a :class:`PSAPair` are pairs of
        paths that have been compared using
        :meth:`PSAnalysis.run_pairs_analysis`. Each :class:`PSAPair` contains
        nearest neighbor and Hausdorff pair information specific to a pair of
        paths. The nearest neighbor frames and distances for a :class:`PSAPair`
        can be accessed in the nearest neighbor dictionary using the keys
        'frames' and 'distances', respectively. E.g.,
        :attr:`PSAPair.nearest_neighbors['distances']` returns a *pair* of
        :class:`numpy.ndarray` corresponding to the nearest neighbor distances
        for each path. Similarly, Hausdorff pair information can be accessed
        using :attr:`PSAPair.hausdorff_pair` with the keys 'frames' and
        'distance'.
        Note
        ----
        Must run :meth:`PSAnalysis.run_pairs_analysis` prior to calling this
        method.
        """
        if self._psa_pairs is None:
            raise ValueError("No nearest neighbors data; do"
                             " 'PSAnalysis.run_pairs_analysis()' first.")
        return self._psa_pairs
    @property
    def hausdorff_pairs(self):
        """The Hausdorff pair for each (unique) pairs of paths.
        This attribute contains a list of Hausdorff pair information (in
        distance vector order), where each element is a dictionary containing
        the pair of frames and the (Hausdorff) distance between a pair of
        paths. See :meth:`PSAnalysis.psa_pairs` and
        :attr:`PSAPair.hausdorff_pair` for more information about accessing
        Hausdorff pair data.
        Note
        ----
        Must run :meth:`PSAnalysis.run_pairs_analysis` with
        ``hausdorff_pairs=True`` prior to calling this method.
        """
        if self._HP is None:
            raise ValueError("No Hausdorff pairs data; do "
                             "'PSAnalysis.run_pairs_analysis(hausdorff_pairs=True)' "
                             "first.")
        return self._HP
    @property
    def nearest_neighbors(self):
        """The nearest neighbors for each (unique) pair of paths.
        This attribute contains a list of nearest neighbor information (in
        distance vector order), where each element is a dictionary containing
        the nearest neighbor frames and distances between a pair of paths. See
        :meth:`PSAnalysis.psa_pairs` and :attr:`PSAPair.nearest_neighbors` for
        more information about accessing nearest neighbor data.
        Note
        ----
        Must run :meth:`PSAnalysis.run_pairs_analysis` with
        ``neighbors=True`` prior to calling this method.
        """
        if self._NN is None:
            raise ValueError("No nearest neighbors data; do"
                             " 'PSAnalysis.run_pairs_analysis(neighbors=True)'"
                             " first.")
        return self._NN