# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
r"""Dihedral angles analysis --- :mod:`MDAnalysis.analysis.dihedrals`
===========================================================================
:Author: Henry Mull
:Year: 2018
:Copyright: GNU Public License v2
.. versionadded:: 0.19.0
This module contains classes for calculating dihedral angles for a given set of
atoms or residues. This can be done for selected frames or whole trajectories.
A list of time steps that contain angles of interest is generated and can be
easily plotted if desired. For the :class:`~MDAnalysis.analysis.dihedrals.Ramachandran`
and :class:`~MDAnalysis.analysis.dihedrals.Janin` classes, basic plots can be
generated using the method :meth:`Ramachandran.plot()` or :meth:`Janin.plot()`.
These plots are best used as references, but they also allow for user customization.
See Also
--------
:func:`MDAnalysis.lib.distances.calc_dihedrals()`
function to calculate dihedral angles from atom positions
Example applications
--------------------
General dihedral analysis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The :class:`~MDAnalysis.analysis.dihedrals.Dihedral` class is useful for calculating
angles for many dihedrals of interest. For example, we can find the phi angles
for residues 5-10 of adenylate kinase (AdK). The trajectory is included within
the test data files::
import MDAnalysis as mda
from MDAnalysisTests.datafiles import GRO, XTC
u = mda.Universe(GRO, XTC)
# selection of atomgroups
ags = [res.phi_selection() for res in u.residues[4:9]]
from MDAnalysis.analysis.dihedrals import Dihedral
R = Dihedral(ags).run()
The angles can then be accessed with :attr:`Dihedral.angles`.
Ramachandran analysis
~~~~~~~~~~~~~~~~~~~~~
The :class:`~MDAnalysis.analysis.dihedrals.Ramachandran` class allows for the
quick calculation of phi and psi angles. Unlike the :class:`~MDanalysis.analysis.dihedrals.Dihedral`
class which takes a list of `atomgroups`, this class only needs a list of
residues or atoms from those residues. The previous example can repeated with::
u = mda.Universe(GRO, XTC)
r = u.select_atoms("resid 5-10")
R = Ramachandran(r).run()
Then it can be plotted using the built-in plotting method :meth:`Ramachandran.plot()`::
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=plt.figaspect(1))
R.plot(ax=ax, color='k', marker='s')
as shown in the example :ref:`Ramachandran plot figure <figure-ramachandran>`.
.. _figure-ramachandran:
.. figure:: /images/rama_demo_plot.png
:scale: 50 %
:alt: Ramachandran plot
Ramachandran plot for residues 5 to 10 of AdK, sampled from the AdK test
trajectory (XTC). The contours in the background are the "allowed region"
and the "marginally allowed" regions.
The Janin class works in the same way, only needing a list of residues; see the
:ref:`Janin plot figure <figure-janin>` as an example. To plot the data
yourself, the angles can be accessed using :attr:`Ramachandran.angles` or
:attr:`Janin.angles`.
Reference plots can be added to the axes for both the Ramachandran and Janin
classes using the kwarg ``ref=True``. The Ramachandran reference data
(:data:`~MDAnalysis.analysis.data.filenames.Rama_ref`) and Janin reference data
(:data:`~MDAnalysis.analysis.data.filenames.Janin_ref`) were made using data
obtained from a large selection of 500 PDB files, and were analyzed using these
classes. The allowed and marginally allowed regions of the Ramachandran reference
plt have cutoffs set to include 90% and 99% of the data points, and the Janin
reference plot has cutoffs for 90% and 98% of the data points. The list of PDB
files used for the referece plots was taken from [Lovell2003]_ and information
about general Janin regions was taken from [Janin1978]_.
.. Note::
These classes are prone to errors if the topology contains duplicate or missing
atoms (e.g. atoms with `altloc` or incomplete residues). If the topology has as
an `altloc` attribute, you must specify only one `altloc` for the atoms with
more than one (``"protein and not altloc B"``).
.. _figure-janin:
.. figure:: /images/janin_demo_plot.png
:scale: 50 %
:alt: Janin plot
Janin plot for residues 5 to 10 of AdK, sampled from the AdK test trajectory
(XTC). The contours in the background are the "allowed region" and the
"marginally allowed" regions for all possible residues.
Analysis Classes
----------------
.. autoclass:: Dihedral
:members:
:inherited-members:
.. attribute:: angles
Contains the time steps of the angles for each atomgroup in the list as
an ``n_frames×len(atomgroups)`` :class:`numpy.ndarray` with content
``[[angle 1, angle 2, ...], [time step 2], ...]``.
.. autoclass:: Ramachandran
:members:
:inherited-members:
.. attribute:: angles
Contains the time steps of the :math:`\phi` and :math:`\psi` angles for
each residue as an ``n_frames×n_residues×2`` :class:`numpy.ndarray` with
content ``[[[phi, psi], [residue 2], ...], [time step 2], ...]``.
.. autoclass:: Janin
:members:
:inherited-members:
.. attribute:: angles
Contains the time steps of the :math:`\chi_1` and :math:`\chi_2` angles
for each residue as an ``n_frames×n_residues×2`` :class:`numpy.ndarray`
with content ``[[[chi1, chi2], [residue 2], ...], [time step 2], ...]``.
References
----------
.. [Lovell2003] Simon C. Lovell, Ian W. Davis, W. Bryan Arendall III,
Paul I. W. de Bakker, J. Michael Word, Michael G. Prisant,
Jane S. Richardson, and David C. Richardson (2003). "Structure validation by
:math:`C_{\alpha}` geometry: :math:`\phi`, :math:`\psi`, and
:math:`C_{\beta}` deviation". *Proteins* 50(3): 437-450. doi:
`10.1002/prot.10286 <https://doi.org/10.1002/prot.10286>`_
.. [Janin1978] Joël Janin, Shoshanna Wodak, Michael Levitt, and Bernard
Maigret. (1978). "Conformation of amino acid side-chains in
proteins". *Journal of Molecular Biology* 125(3): 357-386. doi:
`10.1016/0022-2836(78)90408-4 <https://doi.org/10.1016/0022-2836(78)90408-4>`_
"""
from __future__ import absolute_import
from six.moves import zip, range
import numpy as np
import matplotlib.pyplot as plt
import warnings
import MDAnalysis as mda
from MDAnalysis.analysis.base import AnalysisBase
from MDAnalysis.lib.distances import calc_dihedrals
from MDAnalysis.analysis.data.filenames import Rama_ref, Janin_ref
[docs]class Dihedral(AnalysisBase):
"""Calculate dihedral angles for specified atomgroups.
Dihedral angles will be calculated for each atomgroup that is given for
each step in the trajectory. Each :class:`~MDAnalysis.core.groups.AtomGroup`
must contain 4 atoms.
Note
----
This class takes a list as an input and is most useful for a large
selection of atomgroups. If there is only one atomgroup of interest, then
it must be given as a list of one atomgroup.
"""
def __init__(self, atomgroups, **kwargs):
"""Parameters
----------
atomgroups : list
a list of atomgroups for which the dihedral angles are calculated
Raises
------
ValueError
If any atomgroups do not contain 4 atoms
"""
super(Dihedral, self).__init__(atomgroups[0].universe.trajectory, **kwargs)
self.atomgroups = atomgroups
if any([len(ag) != 4 for ag in atomgroups]):
raise ValueError("All AtomGroups must contain 4 atoms")
self.ag1 = mda.AtomGroup([ag[0] for ag in atomgroups])
self.ag2 = mda.AtomGroup([ag[1] for ag in atomgroups])
self.ag3 = mda.AtomGroup([ag[2] for ag in atomgroups])
self.ag4 = mda.AtomGroup([ag[3] for ag in atomgroups])
def _prepare(self):
self.angles = []
def _single_frame(self):
angle = calc_dihedrals(self.ag1.positions, self.ag2.positions,
self.ag3.positions, self.ag4.positions,
box=self.ag1.dimensions)
self.angles.append(angle)
def _conclude(self):
self.angles = np.rad2deg(np.array(self.angles))
[docs]class Ramachandran(AnalysisBase):
"""Calculate :math:`\phi` and :math:`\psi` dihedral angles of selected residues.
:math:`\phi` and :math:`\psi` angles will be calculated for each residue
corresponding to `atomgroup` for each time step in the trajectory. A
:class:`~MDAnalysis.ResidueGroup` is generated from `atomgroup` which is
compared to the protein to determine if it is a legitimate selection.
Note
----
If the residue selection is beyond the scope of the protein, then an error
will be raised. If the residue selection includes the first or last residue,
then a warning will be raised and they will be removed from the list of
residues, but the analysis will still run. If a :math:`\phi` or :math:`\psi`
selection cannot be made, that residue will be removed from the analysis.
"""
def __init__(self, atomgroup, **kwargs):
"""Parameters
----------
atomgroup : AtomGroup or ResidueGroup
atoms for residues for which :math:`\phi` and :math:`\psi` are
calculated
Raises
------
ValueError
If the selection of residues is not contained within the protein
"""
super(Ramachandran, self).__init__(atomgroup.universe.trajectory, **kwargs)
self.atomgroup = atomgroup
residues = self.atomgroup.residues
protein = self.atomgroup.universe.select_atoms("protein").residues
if not residues.issubset(protein):
raise ValueError("Found atoms outside of protein. Only atoms "
"inside of a 'protein' selection can be used to "
"calculate dihedrals.")
elif not residues.isdisjoint(protein[[0, -1]]):
warnings.warn("Cannot determine phi and psi angles for the first "
"or last residues")
residues = residues.difference(protein[[0, -1]])
phi_sel = [res.phi_selection() for res in residues]
psi_sel = [res.psi_selection() for res in residues]
# phi_selection() and psi_selection() currently can't handle topologies
# with an altloc attribute so this removes any residues that have either
# angle return none instead of a value
if any(sel is None for sel in phi_sel):
warnings.warn("Some residues in selection do not have phi selections")
remove = [i for i, sel in enumerate(phi_sel) if sel is None]
phi_sel = [sel for i, sel in enumerate(phi_sel) if i not in remove]
psi_sel = [sel for i, sel in enumerate(psi_sel) if i not in remove]
if any(sel is None for sel in psi_sel):
warnings.warn("Some residues in selection do not have psi selections")
remove = [i for i, sel in enumerate(psi_sel) if sel is None]
phi_sel = [sel for i, sel in enumerate(phi_sel) if i not in remove]
psi_sel = [sel for i, sel in enumerate(psi_sel) if i not in remove]
self.ag1 = mda.AtomGroup([atoms[0] for atoms in phi_sel])
self.ag2 = mda.AtomGroup([atoms[1] for atoms in phi_sel])
self.ag3 = mda.AtomGroup([atoms[2] for atoms in phi_sel])
self.ag4 = mda.AtomGroup([atoms[3] for atoms in phi_sel])
self.ag5 = mda.AtomGroup([atoms[3] for atoms in psi_sel])
def _prepare(self):
self.angles = []
def _single_frame(self):
phi_angles = calc_dihedrals(self.ag1.positions, self.ag2.positions,
self.ag3.positions, self.ag4.positions,
box=self.ag1.dimensions)
psi_angles = calc_dihedrals(self.ag2.positions, self.ag3.positions,
self.ag4.positions, self.ag5.positions,
box=self.ag1.dimensions)
phi_psi = [(phi, psi) for phi, psi in zip(phi_angles, psi_angles)]
self.angles.append(phi_psi)
def _conclude(self):
self.angles = np.rad2deg(np.array(self.angles))
[docs] def plot(self, ax=None, ref=False, **kwargs):
"""Plots data into standard ramachandran plot. Each time step in
:attr:`Ramachandran.angles` is plotted onto the same graph.
Parameters
----------
ax : :class:`matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
ref : bool, optional
Adds a general Ramachandran plot which shows allowed and
marginally allowed regions
Returns
-------
ax : :class:`matplotlib.axes.Axes`
Axes with the plot, either `ax` or the current axes.
"""
if ax is None:
ax = plt.gca()
ax.axis([-180,180,-180,180])
ax.axhline(0, color='k', lw=1)
ax.axvline(0, color='k', lw=1)
ax.set(xticks=range(-180, 181, 60), yticks=range(-180, 181, 60),
xlabel=r"$\phi$ (deg)", ylabel=r"$\psi$ (deg)")
if ref == True:
X, Y = np.meshgrid(np.arange(-180, 180, 4), np.arange(-180, 180, 4))
levels = [1, 17, 15000]
colors = ['#A1D4FF', '#35A1FF']
ax.contourf(X, Y, np.load(Rama_ref), levels=levels, colors=colors)
a = self.angles.reshape(np.prod(self.angles.shape[:2]), 2)
ax.scatter(a[:,0], a[:,1], **kwargs)
return ax
[docs]class Janin(Ramachandran):
"""Calculate :math:`\chi_1` and :math:`\chi_2` dihedral angles of selected residues.
:math:`\chi_1` and :math:`\chi_2` angles will be calculated for each residue
corresponding to `atomgroup` for each time step in the trajectory. A
:class:`~MDAnalysis.ResidueGroup` is generated from `atomgroup` which is
compared to the protein to determine if it is a legitimate selection.
Note
----
If the residue selection is beyond the scope of the protein, then an error
will be raised. If the residue selection includes the residues ALA, CYS,
GLY, PRO, SER, THR, or VAL, then a warning will be raised and they will be
removed from the list of residues, but the analysis will still run. Some
topologies have altloc attribues which can add duplicate atoms to the
selection and must be removed.
"""
def __init__(self, atomgroup, **kwargs):
"""Parameters
----------
atomgroup : AtomGroup or ResidueGroup
atoms for residues for which :math:`\chi_1` and :math:`\chi_2` are
calculated
Raises
------
ValueError
If the selection of residues is not contained within the protein
ValueError
If not enough or too many atoms are found for a residue in the
selection, usually due to missing atoms or alternative locations
"""
super(Ramachandran, self).__init__(atomgroup.universe.trajectory, **kwargs)
self.atomgroup = atomgroup
residues = atomgroup.residues
protein = atomgroup.universe.select_atoms("protein").residues
remove = residues.atoms.select_atoms("resname ALA CYS GLY PRO SER"
" THR VAL").residues
if not residues.issubset(protein):
raise ValueError("Found atoms outside of protein. Only atoms "
"inside of a 'protein' selection can be used to "
"calculate dihedrals.")
elif len(remove) != 0:
warnings.warn("All ALA, CYS, GLY, PRO, SER, THR, and VAL residues"
" have been removed from the selection.")
residues = residues.difference(remove)
self.ag1 = residues.atoms.select_atoms("name N")
self.ag2 = residues.atoms.select_atoms("name CA")
self.ag3 = residues.atoms.select_atoms("name CB")
self.ag4 = residues.atoms.select_atoms("name CG CG1")
self.ag5 = residues.atoms.select_atoms("name CD CD1 OD1 ND1 SD")
# if there is an altloc attribute, too many atoms will be selected which
# must be removed before using the class, or the file is missing atoms
# for some residues which must also be removed
if any(len(self.ag1) != len(ag) for ag in [self.ag2, self.ag3,
self.ag4, self.ag5]):
raise ValueError("Too many or too few atoms selected. Check for "
"missing or duplicate atoms in topology.")
def _conclude(self):
self.angles = (np.rad2deg(np.array(self.angles)) + 360) % 360
[docs] def plot(self, ax=None, ref=False, **kwargs):
"""Plots data into standard Janin plot. Each time step in
:attr:`Janin.angles` is plotted onto the same graph.
Parameters
----------
ax : :class:`matplotlib.axes.Axes`
If no `ax` is supplied or set to ``None`` then the plot will
be added to the current active axes.
ref : bool, optional
Adds a general Janin plot which shows allowed and marginally
allowed regions
Returns
-------
ax : :class:`matplotlib.axes.Axes`
Axes with the plot, either `ax` or the current axes.
"""
if ax is None:
ax = plt.gca()
ax.axis([0, 360, 0, 360])
ax.axhline(180, color='k', lw=1)
ax.axvline(180, color='k', lw=1)
ax.set(xticks=range(0, 361, 60), yticks=range(0, 361, 60),
xlabel=r"$\chi1$ (deg)", ylabel=r"$\chi2$ (deg)")
if ref == True:
X, Y = np.meshgrid(np.arange(0, 360, 6), np.arange(0, 360, 6))
levels = [1, 6, 600]
colors = ['#A1D4FF', '#35A1FF']
ax.contourf(X, Y, np.load(Janin_ref), levels=levels, colors=colors)
a = self.angles.reshape(np.prod(self.angles.shape[:2]), 2)
ax.scatter(a[:,0], a[:,1], **kwargs)
return ax