Source code for MDAnalysis.analysis.gnm

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

#Analyse a trajectory using elastic network models, following the approach of Hall et al (JACS 2007)
#Ben Hall ([email protected]) is to blame
#Copyright 2011; Consider under GPL v2 or later
r"""
Elastic network analysis of MD trajectories --- :mod:`MDAnalysis.analysis.gnm`
==============================================================================

:Author: Benjamin Hall <[email protected]>
:Year: 2011
:Copyright: Lesser GNU Public License v2.1 or later


Analyse a trajectory using elastic network models, following the approach of
:footcite:p:`Hall2007`.

An example is provided in the MDAnalysis Cookbook_, listed as GNMExample_.

.. _GNMExample: https://github.com/MDAnalysis/MDAnalysisCookbook/blob/master/examples/GNMExample.py
.. _Cookbook: https://github.com/MDAnalysis/MDAnalysisCookbook

The basic approach is to pass a trajectory to :class:`GNMAnalysis` and then run
the analysis:

.. code-block:: python

    u = MDAnalysis.Universe(PSF, DCD)
    C = MDAnalysis.analysis.gnm.GNMAnalysis(u, ReportVector="output.txt")

    C.run()
    output = zip(*C.results)

    with open("eigenvalues.dat", "w") as outputfile:
        for item in output[1]:
            outputfile.write(item + "\n")


The results are found in :attr:`GNMAnalysis.results`, which can be
used for further processing (see :footcite:p:`Hall2007`).

.. rubric:: References

.. footbibliography::


Analysis tasks
--------------

.. autoclass:: GNMAnalysis
   :members:
.. autoclass:: closeContactGNMAnalysis
   :members:

Utility functions
-----------------

The following functions are used internally and are typically not
directly needed to perform the analysis.

.. autofunction:: generate_grid
.. autofunction:: order_list

.. versionchanged:: 0.16.0
   removed unused function :func:`backup_file`

"""
import itertools
import logging
import warnings

import numpy as np

from .base import AnalysisBase, ResultsGroup


from MDAnalysis.analysis.base import Results

logger = logging.getLogger('MDAnalysis.analysis.GNM')


def _dsq(a, b):
    diff = (a - b)
    return np.dot(diff, diff)


[docs] def generate_grid(positions, cutoff): """Simple grid search. An alternative to searching the entire list of each atom; divide the structure into `cutoff` sized boxes This way, for each particle you only need to search the neighbouring boxes to find the particles within the `cutoff`. Observed a 6x speed up for a smallish protein with ~300 residues; this should get better with bigger systems. Parameters ---------- positions : array coordinates of the atoms cutoff : float find particles with distance less than `cutoff` from each other; the grid will consist of boxes with sides of at least length `cutoff` """ positions = np.asarray(positions) x, y, z = positions.T high_x = x.max() high_y = y.max() high_z = z.max() low_x = x.min() low_y = y.min() low_z = z.min() #Ok now generate a list with 3 dimensions representing boxes in x, y and z grid = [[[[] for i in range(int((high_z - low_z) / cutoff) + 1)] for j in range(int((high_y - low_y) / cutoff) + 1)] for k in range(int((high_x - low_x) / cutoff) + 1)] for i, pos in enumerate(positions): x_pos = int((pos[0] - low_x) / cutoff) y_pos = int((pos[1] - low_y) / cutoff) z_pos = int((pos[2] - low_z) / cutoff) grid[x_pos][y_pos][z_pos].append(i) return grid
def neighbour_generator(positions, cutoff): """ return atom pairs that are in neighboring regions of space from a verlet-grid Parameters ---------- positions : ndarray atom positions cutoff : float size of grid box Yields ------ i_atom, j_atom indices of close atom pairs """ grid = generate_grid(positions, cutoff) n_x = len(grid) n_y = len(grid[0]) n_z = len(grid[0][0]) for cell_x, cell_y, cell_z in itertools.product( range(n_x), range(n_y), range(n_z)): atoms = grid[cell_x][cell_y][cell_z] # collect all atoms in own cell and neighboring cell all_atoms = [] nei_cells = (-1, 0, 1) for x, y, z in itertools.product(nei_cells, nei_cells, nei_cells): gx = cell_x + x gy = cell_y + y gz = cell_z + z if 0 <= gx < n_x and 0 <= gy < n_y and 0 <= gz < n_z: all_atoms += grid[gx][gy][gz] # return all possible atom pairs in current cell for i_atom in atoms: for j_atom in all_atoms: yield i_atom, j_atom
[docs] def order_list(w): """Returns a dictionary showing the order of eigenvalues (which are reported scrambled normally)""" ordered = list(w) unordered = list(w) ordered.sort() list_map = {} for i in range(len(w)): list_map[i] = unordered.index(ordered[i]) return list_map
[docs] class GNMAnalysis(AnalysisBase): """Basic tool for GNM analysis. Each frame is treated as a novel structure and the GNM calculated. By default, this stores the dominant eigenvector and its associated eigenvalue; either can be used to monitor conformational change in a simulation. Parameters ---------- universe : Universe Analyze the full trajectory in the universe. select : str (optional) MDAnalysis selection string cutoff : float (optional) Consider selected atoms within the cutoff as neighbors for the Gaussian network model. ReportVector : str (optional) filename to write eigenvectors to, by default no output is written Bonus_groups : tuple This is a tuple of selection strings that identify additional groups (such as ligands). The center of mass of each group will be added as a single point in the ENM (it is a popular way of treating small ligands such as drugs). You need to ensure that none of the atoms in `Bonus_groups` is contained in `selection` as this could lead to double counting. No checks are applied. Attributes ---------- results.times : numpy.ndarray simulation times used in analysis results.eigenvalues : numpy.ndarray calculated eigenvalues results.eigenvectors : numpy.ndarray calculated eigenvectors See Also -------- :class:`closeContactGNMAnalysis` .. versionchanged:: 0.16.0 Made :meth:`generate_output` a private method :meth:`_generate_output`. .. versionchanged:: 1.0.0 Changed `selection` keyword to `select` .. versionchanged:: 2.0.0 Use :class:`~MDAnalysis.analysis.AnalysisBase` as parent class and store results as attributes ``times``, ``eigenvalues`` and ``eigenvectors`` of the ``results`` attribute. .. versionchanged:: 2.8.0 Enabled **parallel execution** with the ``multiprocessing`` and ``dask`` backends; use the new method :meth:`get_supported_backends` to see all supported backends. """ _analysis_algorithm_is_parallelizable = True
[docs] @classmethod def get_supported_backends(cls): return ("serial", "multiprocessing", "dask")
def __init__(self, universe, select='protein and name CA', cutoff=7.0, ReportVector=None, Bonus_groups=None): super(GNMAnalysis, self).__init__(universe.trajectory) self.u = universe self.select = select self.cutoff = cutoff self.results = Results() self.results.eigenvalues = [] self.results.eigenvectors = [] self._timesteps = None # time for each frame self.ReportVector = ReportVector self.Bonus_groups = [self.u.select_atoms(item) for item in Bonus_groups] \ if Bonus_groups else [] self.ca = self.u.select_atoms(self.select) def _generate_output(self, w, v, outputobject, ReportVector=None, counter=0): """Appends time, eigenvalues and eigenvectors to results. This generates the output by adding eigenvalue and eigenvector data to an appendable object and optionally printing some of the results to file. This is the function to replace if you want to generate a more complex set of outputs """ list_map = order_list(w) if ReportVector: with open(ReportVector, "a") as oup: for item in enumerate(v[list_map[1]]): print( "", counter, item[0] + 1, w[list_map[1]], item[1], file=oup) outputobject.eigenvalues.append(w[list_map[1]]) outputobject.eigenvectors.append(v[list_map[1]])
[docs] def generate_kirchoff(self): """Generate the Kirchhoff matrix of contacts. This generates the neighbour matrix by generating a grid of near-neighbours and then calculating which are are within the cutoff. Returns ------- array the resulting Kirchhoff matrix """ positions = self.ca.positions #add the com from each bonus group to the ca_positions list for item in self.Bonus_groups: #bonus = self.u.select_atoms(item) positions = np.vstack((positions, item.center_of_mass())) natoms = len(positions) matrix = np.zeros((natoms, natoms), np.float64) cutoffsq = self.cutoff**2 for i_atom, j_atom in neighbour_generator(positions, self.cutoff): if j_atom > i_atom and _dsq(positions[i_atom], positions[j_atom]) < cutoffsq: matrix[i_atom][j_atom] = -1.0 matrix[j_atom][i_atom] = -1.0 matrix[i_atom][i_atom] = matrix[i_atom][i_atom] + 1 matrix[j_atom][j_atom] = matrix[j_atom][j_atom] + 1 return matrix
def _single_frame(self): matrix = self.generate_kirchoff() try: _, w, v = np.linalg.svd(matrix) except np.linalg.LinAlgError: msg = f"SVD with cutoff {self.cutoff} failed to converge. " msg += f"Skip frame at {self._ts.time}." warnings.warn(msg) logger.warning(msg) return # Save the results somewhere useful in some useful format. Usefully. self._generate_output( w, v, self.results, ReportVector=self.ReportVector, counter=self._ts.frame) def _conclude(self): self.results.times = self.times self.results.eigenvalues = np.asarray(self.results.eigenvalues) self.results.eigenvectors = np.asarray(self.results.eigenvectors) def _get_aggregator(self): return ResultsGroup( lookup={ "eigenvectors": ResultsGroup.ndarray_hstack, "eigenvalues": ResultsGroup.ndarray_hstack, "times": ResultsGroup.ndarray_hstack, } )
[docs] class closeContactGNMAnalysis(GNMAnalysis): r"""GNMAnalysis only using close contacts. This is a version of the GNM where the Kirchoff matrix is constructed from the close contacts between individual atoms in different residues. Parameters ---------- universe : Universe Analyze the full trajectory in the universe. select : str (optional) MDAnalysis selection string cutoff : float (optional) Consider selected atoms within the cutoff as neighbors for the Gaussian network model. ReportVector : str (optional) filename to write eigenvectors to, by default no output is written weights : {"size", None} (optional) If set to "size" (the default) then weight the contact by :math:`1/\sqrt{N_i N_j}` where :math:`N_i` and :math:`N_j` are the number of atoms in the residues :math:`i` and :math:`j` that contain the atoms that form a contact. Attributes ---------- results.times : numpy.ndarray simulation times used in analysis results.eigenvalues : numpy.ndarray calculated eigenvalues results.eigenvectors : numpy.ndarray calculated eigenvectors Notes ----- The `MassWeight` option has now been removed. See Also -------- :class:`GNMAnalysis` .. versionchanged:: 0.16.0 Made :meth:`generate_output` a private method :meth:`_generate_output`. .. deprecated:: 0.16.0 Instead of ``MassWeight=True`` use ``weights="size"``. .. versionchanged:: 1.0.0 MassWeight option (see above deprecation entry). Changed `selection` keyword to `select` .. versionchanged:: 2.0.0 Use :class:`~MDAnalysis.analysis.AnalysisBase` as parent class and store results as attributes ``times``, ``eigenvalues`` and ``eigenvectors`` of the `results` attribute. """ def __init__(self, universe, select='protein', cutoff=4.5, ReportVector=None, weights="size"): super(closeContactGNMAnalysis, self).__init__(universe, select, cutoff, ReportVector) self.weights = weights
[docs] def generate_kirchoff(self): nresidues = self.ca.n_residues positions = self.ca.positions residue_index_map = [ resnum for [resnum, residue] in enumerate(self.ca.residues) for atom in residue.atoms ] matrix = np.zeros((nresidues, nresidues), dtype=np.float64) cutoffsq = self.cutoff**2 # cache sqrt of residue sizes (slow) so that sr[i]*sr[j] == sqrt(r[i]*r[j]) inv_sqrt_res_sizes = np.ones(len(self.ca.residues)) if self.weights == 'size': inv_sqrt_res_sizes = 1 / np.sqrt( [r.atoms.n_atoms for r in self.ca.residues]) for i_atom, j_atom in neighbour_generator(positions, self.cutoff): if j_atom > i_atom and _dsq(positions[i_atom], positions[j_atom]) < cutoffsq: iresidue = residue_index_map[i_atom] jresidue = residue_index_map[j_atom] contact = (inv_sqrt_res_sizes[iresidue] * inv_sqrt_res_sizes[jresidue]) matrix[iresidue][jresidue] -= contact matrix[jresidue][iresidue] -= contact matrix[iresidue][iresidue] += contact matrix[jresidue][jresidue] += contact return matrix