Source code for MDAnalysis.analysis.encore.dimensionality_reduction.DimensionalityReductionMethod

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
dimensionality reduction frontend --- :mod:`MDAnalysis.analysis.encore.clustering.DimensionalityReductionMethod`
================================================================================================================

The module defines classes for interfacing to various dimensionality reduction
algorithms. One has been implemented natively, and will always be available,
while others are available only if scikit-learn is installed

:Author: Matteo Tiberti, Wouter Boomsma, Tone Bengtsen

.. versionadded:: 0.16.0

.. deprecated:: 2.8.0
   This module is deprecated in favour of the 
   MDAKit `mdaencore <https://mdanalysis.org/mdaencore/>`_ and will be removed
   in MDAnalysis 3.0.0.

"""
import logging
import warnings

# Import native affinity propagation implementation
from . import stochasticproxembed

# Attempt to import scikit-learn clustering algorithms
try:
    import sklearn.decomposition
except ImportError:
    sklearn = None
    import warnings

    warnings.warn(
        "sklearn.decomposition could not be imported: some "
        "functionality will not be available in "
        "encore.dimensionality_reduction()",
        category=ImportWarning,
    )


[docs] class DimensionalityReductionMethod(object): """ Base class for any Dimensionality Reduction Method """ # Whether the method accepts a distance matrix accepts_distance_matrix = True def __call__(self, x): """ Parameters ---------- x either trajectory coordinate data (np.array) or an encore.utils.TriangularMatrix, encoding the conformational distance matrix Returns ------- numpy.array coordinates in reduced space """ raise NotImplementedError( "Class {0} doesn't implement __call__()".format( self.__class__.__name__ ) )
[docs] class StochasticProximityEmbeddingNative(DimensionalityReductionMethod): """ Interface to the natively implemented Affinity propagation procedure. """ def __init__( self, dimension=2, distance_cutoff=1.5, min_lam=0.1, max_lam=2.0, ncycle=100, nstep=10000, ): """ Parameters ---------- dimension : int Number of dimensions to which the conformational space will be reduced to (default is 3). min_lam : float, optional Final lambda learning rate (default is 0.1). max_lam : float, optional Starting lambda learning rate parameter (default is 2.0). ncycle : int, optional Number of cycles per run (default is 100). At the end of every cycle, lambda is updated. nstep : int, optional Number of steps per cycle (default is 10000) """ self.dimension = dimension self.distance_cutoff = distance_cutoff self.min_lam = min_lam self.max_lam = max_lam self.ncycle = ncycle self.nstep = nstep self.stressfreq = -1 def __call__(self, distance_matrix): """ Parameters ---------- distance_matrix : encore.utils.TriangularMatrix conformational distance matrix Returns ------- numpy.array coordinates in reduced space """ final_stress, coordinates = ( stochasticproxembed.StochasticProximityEmbedding( s=distance_matrix, rco=self.distance_cutoff, dim=self.dimension, minlam=self.min_lam, maxlam=self.max_lam, ncycle=self.ncycle, nstep=self.nstep, stressfreq=self.stressfreq, ) ) return coordinates, {"final_stress": final_stress}
if sklearn:
[docs] class PrincipalComponentAnalysis(DimensionalityReductionMethod): """ Interface to the PCA dimensionality reduction method implemented in sklearn. """ # Whether the method accepts a distance matrix accepts_distance_matrix = False def __init__(self, dimension=2, **kwargs): """ Parameters ---------- dimension : int Number of dimensions to which the conformational space will be reduced to (default is 3). """ self.pca = sklearn.decomposition.PCA( n_components=dimension, **kwargs ) def __call__(self, coordinates): """ Parameters ---------- coordinates : np.array trajectory atom coordinates Returns ------- numpy.array coordinates in reduced space """ coordinates = self.pca.fit_transform(coordinates) return coordinates.T, {}