Source code for MDAnalysis.transformations.base

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the Lesser GNU Public Licence, v2.1 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

"""\
Transformations Base Class --- :mod:`MDAnalysis.transformations.base`
=====================================================================

.. autoclass:: TransformationBase

"""
from threadpoolctl import threadpool_limits


[docs] class TransformationBase(object): """Base class for defining on-the-fly transformations The class is designed as a template for creating on-the-fly Transformation classes. This class will 1) set up a context manager framework on limiting the threads per call, which may be the multi-thread OpenBlas backend of NumPy. This backend may kill the performance when subscribing hyperthread or oversubscribing the threads when used together with other parallel engines e.g. Dask. (PR `#2950 <https://github.com/MDAnalysis/mdanalysis/pull/2950>`_) Define ``max_threads=1`` when that is the case. 2) set up a boolean attribute `parallelizable` for checking if the transformation can be applied in a **split-apply-combine** parallelism. For example, the :class:`~MDAnalysis.transformations.positionaveraging.PositionAverager` is history-dependent and can not be used in parallel analysis natively. (Issue `#2996 <https://github.com/MDAnalysis/mdanalysis/issues/2996>`_) To define a new Transformation, :class:`TransformationBase` has to be subclassed. ``max_threads`` will be set to ``None`` by default, i.e. does not do anything and any settings in the environment such as the environment variable :envvar:`OMP_NUM_THREADS` (see the `OpenMP specification for OMP_NUM_THREADS <https://www.openmp.org/spec-html/5.0/openmpse50.html>`_) are used. ``parallelizable`` will be set to ``True`` by default. You may need to double check if it can be used in parallel analysis; if not, override the value to ``False``. Note this attribute is not checked anywhere in MDAnalysis yet. Developers of the parallel analysis have to check it in their own code. .. code-block:: python class NewTransformation(TransformationBase): def __init__(self, ag, parameter, max_threads=1, parallelizable=True): super().__init__(max_threads=max_threads, parallelizable=parallelizable) self.ag = ag self._param = parameter def _transform(self, ts): # REQUIRED ts.positions = some_function(ts, self.ag, self._param) return ts Afterwards the new transformation can be run like this. .. code-block:: python new_transformation = NewTransformation(ag, param) u.trajectory.add_transformations(new_transformation) .. versionadded:: 2.0.0 Add the base class for all transformations to limit threads and check if it can be used in parallel analysis. """ def __init__(self, **kwargs): """ Parameters ---------- max_threads: int, optional The maximum thread number can be used. Default is ``None``, which means the default or the external setting. parallelizable: bool, optional A check for if this can be used in split-apply-combine parallel analysis approach. Default is ``True``. """ self.max_threads = kwargs.pop('max_threads', None) self.parallelizable = kwargs.pop('parallelizable', True) def __call__(self, ts): """The function that makes transformation can be called as a function The thread limit works as a context manager with given `max_threads` wrapping the real :func:`_transform` function """ with threadpool_limits(self.max_threads): return self._transform(ts) def _transform(self, ts): """Transform the given `Timestep` It deals with the transformation of a single `Timestep`. """ raise NotImplementedError("Only implemented in child classes")