Source code for MDAnalysis.analysis.base
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""Analysis building blocks --- :mod:`MDAnalysis.analysis.base`
============================================================
MDAnalysis provides building blocks for creating analysis classes. One can
think of each analysis class as a "tool" that performs a specific analysis over
the trajectory frames and stores the results in the tool.
Analysis classes are derived from :class:`AnalysisBase` by subclassing. This
inheritance provides a common workflow and API for users and makes many
additional features automatically available (such as frame selections and a
verbose progressbar). The important points for analysis classes are:
#. Analysis tools are Python classes derived from :class:`AnalysisBase`.
#. When instantiating an analysis, the :class:`Universe` or :class:`AtomGroup`
that the analysis operates on is provided together with any other parameters
that are kept fixed for the specific analysis.
#. The analysis is performed with :meth:`~AnalysisBase.run` method. It has a
common set of arguments such as being able to select the frames the analysis
is performed on. The `verbose` keyword argument enables additional output. A
progressbar is shown by default that also shows an estimate for the
remaining time until the end of the analysis.
#. Results are always stored in the attribute :attr:`AnalysisBase.results`,
which is an instance of :class:`Results`, a kind of dictionary that allows
allows item access via attributes. Each analysis class decides what and how
to store in :class:`Results` and needs to document it. For time series, the
:attr:`AnalysisBase.times` contains the time stamps of the analyzed frames.
Example of using a standard analysis tool
-----------------------------------------
For example, the :class:`MDAnalysis.analysis.rms.RMSD` performs a
root-mean-square distance analysis in the following way:
.. code-block:: python
import MDAnalysis as mda
from MDAnalysisTests.datafiles import TPR, XTC
from MDAnalysis.analysis import rms
u = mda.Universe(TPR, XTC)
# (2) instantiate analysis
rmsd = rms.RMSD(u, select='name CA')
# (3) the run() method can select frames in different ways
# run on all frames (with progressbar)
rmsd.run(verbose=True)
# or start, stop, and step can be used
rmsd.run(start=2, stop=8, step=2)
# a list of frames to run the analysis on can be passed
rmsd.run(frames=[0,2,3,6,9])
# a list of booleans the same length of the trajectory can be used
rmsd.run(frames=[True, False, True, True, False, False, True, False,
False, True])
# (4) analyze the results, e.g., plot
t = rmsd.times
y = rmsd.results.rmsd[:, 2] # RMSD at column index 2, see docs
import matplotlib.pyplot as plt
plt.plot(t, y)
plt.xlabel("time (ps)")
plt.ylabel("RMSD (Å)")
Writing new analysis tools
--------------------------
In order to write new analysis tools, derive a class from :class:`AnalysisBase`
and define at least the :meth:`_single_frame` method, as described in
:class:`AnalysisBase`.
.. SeeAlso::
The chapter `Writing your own trajectory analysis`_ in the *User Guide*
contains a step-by-step example for writing analysis tools with
:class:`AnalysisBase`.
.. _`Writing your own trajectory analysis`:
https://userguide.mdanalysis.org/stable/examples/analysis/custom_trajectory_analysis.html
Classes
-------
The :class:`Results` and :class:`AnalysisBase` classes are the essential
building blocks for almost all MDAnalysis tools in the
:mod:`MDAnalysis.analysis` module. They aim to be easily useable and
extendable.
:class:`AnalysisFromFunction` and the :func:`analysis_class` functions are
simple wrappers that make it even easier to create fully-featured analysis
tools if only the single-frame analysis function needs to be written.
"""
from collections import UserDict
import inspect
import logging
import itertools
import numpy as np
from MDAnalysis import coordinates
from MDAnalysis.core.groups import AtomGroup
from MDAnalysis.lib.log import ProgressBar
logger = logging.getLogger(__name__)
[docs]
class Results(UserDict):
r"""Container object for storing results.
:class:`Results` are dictionaries that provide two ways by which values
can be accessed: by dictionary key ``results["value_key"]`` or by object
attribute, ``results.value_key``. :class:`Results` stores all results
obtained from an analysis after calling :meth:`~AnalysisBase.run()`.
The implementation is similar to the :class:`sklearn.utils.Bunch`
class in `scikit-learn`_.
.. _`scikit-learn`: https://scikit-learn.org/
Raises
------
AttributeError
If an assigned attribute has the same name as a default attribute.
ValueError
If a key is not of type ``str`` and therefore is not able to be
accessed by attribute.
Examples
--------
>>> from MDAnalysis.analysis.base import Results
>>> results = Results(a=1, b=2)
>>> results['b']
2
>>> results.b
2
>>> results.a = 3
>>> results['a']
3
>>> results.c = [1, 2, 3, 4]
>>> results['c']
[1, 2, 3, 4]
.. versionadded:: 2.0.0
"""
def _validate_key(self, key):
if key in dir(self):
raise AttributeError(f"'{key}' is a protected dictionary "
"attribute")
elif isinstance(key, str) and not key.isidentifier():
raise ValueError(f"'{key}' is not a valid attribute")
def __init__(self, *args, **kwargs):
kwargs = dict(*args, **kwargs)
if "data" in kwargs.keys():
raise AttributeError(f"'data' is a protected dictionary attribute")
self.__dict__["data"] = {}
self.update(kwargs)
def __setitem__(self, key, item):
self._validate_key(key)
super().__setitem__(key, item)
def __setattr__(self, attr, val):
if attr == 'data':
super().__setattr__(attr, val)
else:
self.__setitem__(attr, val)
def __getattr__(self, attr):
try:
return self[attr]
except KeyError as err:
raise AttributeError("'Results' object has no "
f"attribute '{attr}'") from err
def __delattr__(self, attr):
try:
del self[attr]
except KeyError as err:
raise AttributeError("'Results' object has no "
f"attribute '{attr}'") from err
def __getstate__(self):
return self.data
def __setstate__(self, state):
self.data = state
[docs]
class AnalysisBase(object):
r"""Base class for defining multi-frame analysis
The class is designed as a template for creating multi-frame analyses.
This class will automatically take care of setting up the trajectory
reader for iterating, and it offers to show a progress meter.
Computed results are stored inside the :attr:`results` attribute.
To define a new Analysis, :class:`AnalysisBase` needs to be subclassed
and :meth:`_single_frame` must be defined. It is also possible to define
:meth:`_prepare` and :meth:`_conclude` for pre- and post-processing.
All results should be stored as attributes of the :class:`Results`
container.
Parameters
----------
trajectory : MDAnalysis.coordinates.base.ReaderBase
A trajectory Reader
verbose : bool, optional
Turn on more logging and debugging
Attributes
----------
times: numpy.ndarray
array of Timestep times. Only exists after calling
:meth:`AnalysisBase.run`
frames: numpy.ndarray
array of Timestep frame indices. Only exists after calling
:meth:`AnalysisBase.run`
results: :class:`Results`
results of calculation are stored after call
to :meth:`AnalysisBase.run`
Example
-------
.. code-block:: python
from MDAnalysis.analysis.base import AnalysisBase
class NewAnalysis(AnalysisBase):
def __init__(self, atomgroup, parameter, **kwargs):
super(NewAnalysis, self).__init__(atomgroup.universe.trajectory,
**kwargs)
self._parameter = parameter
self._ag = atomgroup
def _prepare(self):
# OPTIONAL
# Called before iteration on the trajectory has begun.
# Data structures can be set up at this time
self.results.example_result = []
def _single_frame(self):
# REQUIRED
# Called after the trajectory is moved onto each new frame.
# store an example_result of `some_function` for a single frame
self.results.example_result.append(some_function(self._ag,
self._parameter))
def _conclude(self):
# OPTIONAL
# Called once iteration on the trajectory is finished.
# Apply normalisation and averaging to results here.
self.results.example_result = np.asarray(self.example_result)
self.results.example_result /= np.sum(self.result)
Afterwards the new analysis can be run like this
.. code-block:: python
import MDAnalysis as mda
from MDAnalysisTests.datafiles import PSF, DCD
u = mda.Universe(PSF, DCD)
na = NewAnalysis(u.select_atoms('name CA'), 35)
na.run(start=10, stop=20)
print(na.results.example_result)
# results can also be accessed by key
print(na.results["example_result"])
.. versionchanged:: 1.0.0
Support for setting `start`, `stop`, and `step` has been removed. These
should now be directly passed to :meth:`AnalysisBase.run`.
.. versionchanged:: 2.0.0
Added :attr:`results`
"""
def __init__(self, trajectory, verbose=False, **kwargs):
self._trajectory = trajectory
self._verbose = verbose
self.results = Results()
def _setup_frames(self, trajectory, start=None, stop=None, step=None,
frames=None):
"""Pass a Reader object and define the desired iteration pattern
through the trajectory
Parameters
----------
trajectory : mda.Reader
A trajectory Reader
start : int, optional
start frame of analysis
stop : int, optional
stop frame of analysis
step : int, optional
number of frames to skip between each analysed frame
frames : array_like, optional
array of integers or booleans to slice trajectory; cannot be
combined with `start`, `stop`, `step`
.. versionadded:: 2.2.0
Raises
------
ValueError
if *both* `frames` and at least one of `start`, `stop`, or `frames`
is provided (i.e., set to another value than ``None``)
.. versionchanged:: 1.0.0
Added .frames and .times arrays as attributes
.. versionchanged:: 2.2.0
Added ability to iterate through trajectory by passing a list of
frame indices in the `frames` keyword argument
"""
self._trajectory = trajectory
if frames is not None:
if not all(opt is None for opt in [start, stop, step]):
raise ValueError("start/stop/step cannot be combined with "
"frames")
slicer = frames
else:
start, stop, step = trajectory.check_slice_indices(start, stop,
step)
slicer = slice(start, stop, step)
self._sliced_trajectory = trajectory[slicer]
self.start = start
self.stop = stop
self.step = step
self.n_frames = len(self._sliced_trajectory)
self.frames = np.zeros(self.n_frames, dtype=int)
self.times = np.zeros(self.n_frames)
def _single_frame(self):
"""Calculate data from a single frame of trajectory
Don't worry about normalising, just deal with a single frame.
"""
raise NotImplementedError("Only implemented in child classes")
def _prepare(self):
"""Set things up before the analysis loop begins"""
pass # pylint: disable=unnecessary-pass
def _conclude(self):
"""Finalize the results you've gathered.
Called at the end of the :meth:`run` method to finish everything up.
"""
pass # pylint: disable=unnecessary-pass
[docs]
def run(self, start=None, stop=None, step=None, frames=None,
verbose=None, *, progressbar_kwargs={}):
"""Perform the calculation
Parameters
----------
start : int, optional
start frame of analysis
stop : int, optional
stop frame of analysis
step : int, optional
number of frames to skip between each analysed frame
frames : array_like, optional
array of integers or booleans to slice trajectory; `frames` can
only be used *instead* of `start`, `stop`, and `step`. Setting
*both* `frames` and at least one of `start`, `stop`, `step` to a
non-default value will raise a :exc:`ValueError`.
.. versionadded:: 2.2.0
verbose : bool, optional
Turn on verbosity
progressbar_kwargs : dict, optional
ProgressBar keywords with custom parameters regarding progress bar position, etc;
see :class:`MDAnalysis.lib.log.ProgressBar` for full list.
.. versionchanged:: 2.2.0
Added ability to analyze arbitrary frames by passing a list of
frame indices in the `frames` keyword argument.
.. versionchanged:: 2.5.0
Add `progressbar_kwargs` parameter,
allowing to modify description, position etc of tqdm progressbars
"""
logger.info("Choosing frames to analyze")
# if verbose unchanged, use class default
verbose = getattr(self, '_verbose',
False) if verbose is None else verbose
self._setup_frames(self._trajectory, start=start, stop=stop,
step=step, frames=frames)
logger.info("Starting preparation")
self._prepare()
logger.info("Starting analysis loop over %d trajectory frames",
self.n_frames)
for i, ts in enumerate(ProgressBar(
self._sliced_trajectory,
verbose=verbose,
**progressbar_kwargs)):
self._frame_index = i
self._ts = ts
self.frames[i] = ts.frame
self.times[i] = ts.time
self._single_frame()
logger.info("Finishing up")
self._conclude()
return self
[docs]
class AnalysisFromFunction(AnalysisBase):
r"""Create an :class:`AnalysisBase` from a function working on AtomGroups
Parameters
----------
function : callable
function to evaluate at each frame
trajectory : MDAnalysis.coordinates.Reader, optional
trajectory to iterate over. If ``None`` the first AtomGroup found in
args and kwargs is used as a source for the trajectory.
*args : list
arguments for `function`
**kwargs : dict
arguments for `function` and :class:`AnalysisBase`
Attributes
----------
results.frames : numpy.ndarray
simulation frames used in analysis
results.times : numpy.ndarray
simulation times used in analysis
results.timeseries : numpy.ndarray
Results for each frame of the wrapped function,
stored after call to :meth:`AnalysisFromFunction.run`.
Raises
------
ValueError
if `function` has the same `kwargs` as :class:`AnalysisBase`
Example
-------
.. code-block:: python
def rotation_matrix(mobile, ref):
return mda.analysis.align.rotation_matrix(mobile, ref)[0]
rot = AnalysisFromFunction(rotation_matrix, trajectory,
mobile, ref).run()
print(rot.results.timeseries)
.. versionchanged:: 1.0.0
Support for directly passing the `start`, `stop`, and `step` arguments
has been removed. These should instead be passed to
:meth:`AnalysisFromFunction.run`.
.. versionchanged:: 2.0.0
Former :attr:`results` are now stored as :attr:`results.timeseries`
"""
def __init__(self, function, trajectory=None, *args, **kwargs):
if (trajectory is not None) and (not isinstance(
trajectory, coordinates.base.ProtoReader)):
args = (trajectory,) + args
trajectory = None
if trajectory is None:
# all possible places to find trajectory
for arg in itertools.chain(args, kwargs.values()):
if isinstance(arg, AtomGroup):
trajectory = arg.universe.trajectory
break
if trajectory is None:
raise ValueError("Couldn't find a trajectory")
self.function = function
self.args = args
self.kwargs = kwargs
super(AnalysisFromFunction, self).__init__(trajectory)
def _prepare(self):
self.results.timeseries = []
def _single_frame(self):
self.results.timeseries.append(self.function(*self.args,
**self.kwargs))
def _conclude(self):
self.results.frames = self.frames
self.results.times = self.times
self.results.timeseries = np.asarray(self.results.timeseries)
[docs]
def analysis_class(function):
r"""Transform a function operating on a single frame to an
:class:`AnalysisBase` class.
Parameters
----------
function : callable
function to evaluate at each frame
Attributes
----------
results.frames : numpy.ndarray
simulation frames used in analysis
results.times : numpy.ndarray
simulation times used in analysis
results.timeseries : numpy.ndarray
Results for each frame of the wrapped function,
stored after call to :meth:`AnalysisFromFunction.run`.
Raises
------
ValueError
if `function` has the same `kwargs` as :class:`AnalysisBase`
Examples
--------
For use in a library, we recommend the following style
.. code-block:: python
def rotation_matrix(mobile, ref):
return mda.analysis.align.rotation_matrix(mobile, ref)[0]
RotationMatrix = analysis_class(rotation_matrix)
It can also be used as a decorator
.. code-block:: python
@analysis_class
def RotationMatrix(mobile, ref):
return mda.analysis.align.rotation_matrix(mobile, ref)[0]
rot = RotationMatrix(u.trajectory, mobile, ref).run(step=2)
print(rot.results.timeseries)
.. versionchanged:: 2.0.0
Former :attr:`results` are now stored as :attr:`results.timeseries`
"""
class WrapperClass(AnalysisFromFunction):
def __init__(self, trajectory=None, *args, **kwargs):
super(WrapperClass, self).__init__(function, trajectory,
*args, **kwargs)
return WrapperClass
def _filter_baseanalysis_kwargs(function, kwargs):
"""
Create two dictionaries with `kwargs` separated for `function` and
:class:`AnalysisBase`
Parameters
----------
function : callable
function to be called
kwargs : dict
keyword argument dictionary
Returns
-------
base_args : dict
dictionary of AnalysisBase kwargs
kwargs : dict
kwargs without AnalysisBase kwargs
Raises
------
ValueError
if `function` has the same `kwargs` as :class:`AnalysisBase`
"""
try:
# pylint: disable=deprecated-method
base_argspec = inspect.getfullargspec(AnalysisBase.__init__)
except AttributeError:
# pylint: disable=deprecated-method
base_argspec = inspect.getargspec(AnalysisBase.__init__)
n_base_defaults = len(base_argspec.defaults)
base_kwargs = {name: val
for name, val in zip(base_argspec.args[-n_base_defaults:],
base_argspec.defaults)}
try:
# pylint: disable=deprecated-method
argspec = inspect.getfullargspec(function)
except AttributeError:
# pylint: disable=deprecated-method
argspec = inspect.getargspec(function)
for base_kw in base_kwargs.keys():
if base_kw in argspec.args:
raise ValueError(
"argument name '{}' clashes with AnalysisBase argument."
"Now allowed are: {}".format(base_kw, base_kwargs.keys()))
base_args = {}
for argname, default in base_kwargs.items():
base_args[argname] = kwargs.pop(argname, default)
return base_args, kwargs