4.2.6.1.5. Covariance calculation — encore.covariance
¶
The module contains functions to estimate the covariance matrix of an ensemble of structures.
Author: | Matteo Tiberti, Wouter Boomsma, Tone Bengtsen |
---|
New in version 0.16.0.
-
MDAnalysis.analysis.encore.covariance.
covariance_matrix
(ensemble, select='name CA', estimator=<function shrinkage_covariance_estimator>, weights='mass', reference=None)[source]¶ Calculates (optionally mass weighted) covariance matrix
Parameters: - ensemble (Universe object) – The structural ensemble
- select (str (optional)) – Atom selection string in the MDAnalysis format.
- estimator (function (optional)) – Function that estimates the covariance matrix. It requires at least a “coordinates” numpy array (of shape (N,M,3), where N is the number of frames and M the number of atoms). See ml_covariance_estimator and shrinkage_covariance_estimator for reference.
- weights (str/array_like (optional)) – specify weights. If
'mass'
then chose masses of ensemble atoms, ifNone
chose uniform weights - reference (MDAnalysis.Universe object (optional)) – Use the distances to a specific reference structure rather than the distance to the mean.
Returns: cov_mat – Covariance matrix
Return type: numpy.array
-
MDAnalysis.analysis.encore.covariance.
ml_covariance_estimator
(coordinates, reference_coordinates=None)[source]¶ Standard maximum likelihood estimator of the covariance matrix.
Parameters: - coordinates (numpy.array) – Flattened array of coordiantes
- reference_coordinates (numpy.array) – Optional reference to use instead of mean
Returns: cov_mat – Estimate of covariance matrix
Return type: numpy.array
-
MDAnalysis.analysis.encore.covariance.
shrinkage_covariance_estimator
(coordinates, reference_coordinates=None, shrinkage_parameter=None)[source]¶ Shrinkage estimator of the covariance matrix using the method described in
Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection. Ledoit, O.; Wolf, M., Journal of Empirical Finance, 10, 5, 2003
This implementation is based on the matlab code made available by Olivier Ledoit on his website: http://www.ledoit.net/ole2_abstract.htm
Parameters: Returns: cov_mat – Covariance matrix
Return type: nump.array