Source code for MDAnalysis.analysis.lineardensity

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Linear Density --- :mod:`MDAnalysis.analysis.lineardensity`
===========================================================

A tool to compute mass and charge density profiles along the three
cartesian axes [xyz] of the simulation cell. Works only for orthorombic,
fixed volume cells (thus for simulations in canonical NVT ensemble).
"""
import os.path as path

import numpy as np

from MDAnalysis.analysis.base import AnalysisBase, Results


[docs]class LinearDensity(AnalysisBase): """Linear density profile Parameters ---------- select : AtomGroup any atomgroup grouping : str {'atoms', 'residues', 'segments', 'fragments'} Density profiles will be computed on the center of geometry of a selected group of atoms binsize : float Bin width in Angstrom used to build linear density histograms. Defines the resolution of the resulting density profile (smaller --> higher resolution) verbose : bool, optional Show detailed progress of the calculation if set to ``True`` Attributes ---------- results.x.dim : int index of the [xyz] axes results.x.pos : numpy.ndarray mass density in [xyz] direction results.x.pos_std : numpy.ndarray standard deviation of the mass density in [xyz] direction results.x.char : numpy.ndarray charge density in [xyz] direction results.x.char_std : numpy.ndarray standard deviation of the charge density in [xyz] direction results.x.slice_volume : float volume of bin in [xyz] direction Example ------- First create a ``LinearDensity`` object by supplying a selection, then use the :meth:`run` method. Finally access the results stored in results, i.e. the mass density in the x direction. .. code-block:: python ldens = LinearDensity(selection) ldens.run() print(ldens.results.x.pos) .. versionadded:: 0.14.0 .. versionchanged:: 1.0.0 Support for the ``start``, ``stop``, and ``step`` keywords has been removed. These should instead be passed to :meth:`LinearDensity.run`. The ``save()`` method was also removed, you can use ``np.savetxt()`` or ``np.save()`` on the :attr:`LinearDensity.results` dictionary contents instead. .. versionchanged:: 1.0.0 Changed `selection` keyword to `select` .. versionchanged:: 2.0.0 Results are now instances of :class:`~MDAnalysis.core.analysis.Results` allowing access via key and attribute. """ def __init__(self, select, grouping='atoms', binsize=0.25, **kwargs): super(LinearDensity, self).__init__(select.universe.trajectory, **kwargs) # allows use of run(parallel=True) self._ags = [select] self._universe = select.universe self.binsize = binsize # group of atoms on which to compute the COM (same as used in # AtomGroup.wrap()) self.grouping = grouping # Initiate result instances self.results["x"] = Results(dim=0) self.results["y"] = Results(dim=1) self.results["z"] = Results(dim=2) # Box sides self.dimensions = self._universe.dimensions[:3] self.volume = np.prod(self.dimensions) # number of bins bins = (self.dimensions // self.binsize).astype(int) # Here we choose a number of bins of the largest cell side so that # x, y and z values can use the same "coord" column in the output file self.nbins = bins.max() slices_vol = self.volume / bins self.keys = ['pos', 'pos_std', 'char', 'char_std'] # Initialize results array with zeros for dim in self.results: idx = self.results[dim]['dim'] self.results[dim]['slice_volume'] = slices_vol[idx] for key in self.keys: self.results[dim][key] = np.zeros(self.nbins) # Variables later defined in _prepare() method self.masses = None self.charges = None self.totalmass = None def _prepare(self): # group must be a local variable, otherwise there will be # issues with parallelization group = getattr(self._ags[0], self.grouping) # Get masses and charges for the selection try: # in case it's not an atom self.masses = np.array([elem.total_mass() for elem in group]) self.charges = np.array([elem.total_charge() for elem in group]) except AttributeError: # much much faster for atoms self.masses = self._ags[0].masses self.charges = self._ags[0].charges self.totalmass = np.sum(self.masses) def _single_frame(self): self.group = getattr(self._ags[0], self.grouping) self._ags[0].wrap(compound=self.grouping) # Find position of atom/group of atoms if self.grouping == 'atoms': positions = self._ags[0].positions # faster for atoms else: # COM for res/frag/etc positions = np.array([elem.centroid() for elem in self.group]) for dim in ['x', 'y', 'z']: idx = self.results[dim]['dim'] key = 'pos' key_std = 'pos_std' # histogram for positions weighted on masses hist, _ = np.histogram(positions[:, idx], weights=self.masses, bins=self.nbins, range=(0.0, max(self.dimensions))) self.results[dim][key] += hist self.results[dim][key_std] += np.square(hist) key = 'char' key_std = 'char_std' # histogram for positions weighted on charges hist, _ = np.histogram(positions[:, idx], weights=self.charges, bins=self.nbins, range=(0.0, max(self.dimensions))) self.results[dim][key] += hist self.results[dim][key_std] += np.square(hist) def _conclude(self): k = 6.022e-1 # divide by avodagro and convert from A3 to cm3 # Average results over the number of configurations for dim in ['x', 'y', 'z']: for key in ['pos', 'pos_std', 'char', 'char_std']: self.results[dim][key] /= self.n_frames # Compute standard deviation for the error self.results[dim]['pos_std'] = np.sqrt(self.results[dim][ 'pos_std'] - np.square(self.results[dim]['pos'])) self.results[dim]['char_std'] = np.sqrt(self.results[dim][ 'char_std'] - np.square(self.results[dim]['char'])) for dim in ['x', 'y', 'z']: norm = k * self.results[dim]['slice_volume'] for key in self.keys: self.results[dim][key] /= norm def _add_other_results(self, other): # For parallel analysis results = self.results for dim in ['x', 'y', 'z']: key = 'pos' key_std = 'pos_std' results[dim][key] += other[dim][key] results[dim][key_std] += other[dim][key_std] key = 'char' key_std = 'char_std' results[dim][key] += other[dim][key] results[dim][key_std] += other[dim][key_std]