Source code for MDAnalysis.analysis.base

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Analysis building blocks --- :mod:`MDAnalysis.analysis.base`
============================================================

The building blocks for creating Analysis classes.

"""
from collections import UserDict
import inspect
import logging
import itertools

import numpy as np
from MDAnalysis import coordinates
from MDAnalysis.core.groups import AtomGroup
from MDAnalysis.lib.log import ProgressBar

logger = logging.getLogger(__name__)


[docs]class Results(UserDict): r"""Container object for storing results. ``Results`` are dictionaries that provide two ways by which values can be accessed: by dictionary key ``results["value_key"]`` or by object attribute, ``results.value_key``. ``Results`` stores all results obtained from an analysis after calling :func:`run()`. The implementation is similar to the :class:`sklearn.utils.Bunch` class in `scikit-learn`_. .. _`scikit-learn`: https://scikit-learn.org/ Raises ------ AttributeError If an assigned attribute has the same name as a default attribute. ValueError If a key is not of type ``str`` and therefore is not able to be accessed by attribute. Examples -------- >>> from MDAnalysis.analysis.base import Results >>> results = Results(a=1, b=2) >>> results['b'] 2 >>> results.b 2 >>> results.a = 3 >>> results['a'] 3 >>> results.c = [1, 2, 3, 4] >>> results['c'] [1, 2, 3, 4] .. versionadded:: 2.0.0 """ def _validate_key(self, key): if key in dir(self): raise AttributeError(f"'{key}' is a protected dictionary " "attribute") elif isinstance(key, str) and not key.isidentifier(): raise ValueError(f"'{key}' is not a valid attribute") def __init__(self, *args, **kwargs): kwargs = dict(*args, **kwargs) if "data" in kwargs.keys(): raise AttributeError(f"'data' is a protected dictionary attribute") self.__dict__["data"] = {} self.update(kwargs) def __setitem__(self, key, item): self._validate_key(key) super().__setitem__(key, item) def __setattr__(self, attr, val): if attr == 'data': super().__setattr__(attr, val) else: self.__setitem__(attr, val) def __getattr__(self, attr): try: return self[attr] except KeyError as err: raise AttributeError("'Results' object has no " f"attribute '{attr}'") from err def __delattr__(self, attr): try: del self[attr] except KeyError as err: raise AttributeError("'Results' object has no " f"attribute '{attr}'") from err def __getstate__(self): return self.data def __setstate__(self, state): self.data = state
[docs]class AnalysisBase(object): r"""Base class for defining multi-frame analysis The class is designed as a template for creating multi-frame analyses. This class will automatically take care of setting up the trajectory reader for iterating, and it offers to show a progress meter. Computed results are stored inside the :attr:`results` attribute. To define a new Analysis, `AnalysisBase` needs to be subclassed and :meth:`_single_frame` must be defined. It is also possible to define :meth:`_prepare` and :meth:`_conclude` for pre- and post-processing. All results should be stored as attributes of the :class:`Results` container. Parameters ---------- trajectory : MDAnalysis.coordinates.base.ReaderBase A trajectory Reader verbose : bool, optional Turn on more logging and debugging Attributes ---------- times: numpy.ndarray array of Timestep times. Only exists after calling :meth:`AnalysisBase.run` frames: numpy.ndarray array of Timestep frame indices. Only exists after calling :meth:`AnalysisBase.run` results: :class:`Results` results of calculation are stored after call to :meth:`AnalysisBase.run` Example ------- .. code-block:: python from MDAnalysis.analysis.base import AnalysisBase class NewAnalysis(AnalysisBase): def __init__(self, atomgroup, parameter, **kwargs): super(NewAnalysis, self).__init__(atomgroup.universe.trajectory, **kwargs) self._parameter = parameter self._ag = atomgroup def _prepare(self): # OPTIONAL # Called before iteration on the trajectory has begun. # Data structures can be set up at this time self.results.example_result = [] def _single_frame(self): # REQUIRED # Called after the trajectory is moved onto each new frame. # store an example_result of `some_function` for a single frame self.results.example_result.append(some_function(self._ag, self._parameter)) def _conclude(self): # OPTIONAL # Called once iteration on the trajectory is finished. # Apply normalisation and averaging to results here. self.results.example_result = np.asarray(self.example_result) self.results.example_result /= np.sum(self.result) Afterwards the new analysis can be run like this .. code-block:: python import MDAnalysis as mda from MDAnalysisTests.datafiles import PSF, DCD u = mda.Universe(PSF, DCD) na = NewAnalysis(u.select_atoms('name CA'), 35) na.run(start=10, stop=20) print(na.results.example_result) # results can also be accessed by key print(na.results["example_result"]) .. versionchanged:: 1.0.0 Support for setting ``start``, ``stop``, and ``step`` has been removed. These should now be directly passed to :meth:`AnalysisBase.run`. .. versionchanged:: 2.0.0 Added :attr:`results` """ def __init__(self, trajectory, verbose=False, **kwargs): self._trajectory = trajectory self._verbose = verbose self.results = Results() def _setup_frames(self, trajectory, start=None, stop=None, step=None): """ Pass a Reader object and define the desired iteration pattern through the trajectory Parameters ---------- trajectory : mda.Reader A trajectory Reader start : int, optional start frame of analysis stop : int, optional stop frame of analysis step : int, optional number of frames to skip between each analysed frame .. versionchanged:: 1.0.0 Added .frames and .times arrays as attributes """ self._trajectory = trajectory start, stop, step = trajectory.check_slice_indices(start, stop, step) self.start = start self.stop = stop self.step = step self.n_frames = len(range(start, stop, step)) self.frames = np.zeros(self.n_frames, dtype=int) self.times = np.zeros(self.n_frames) def _single_frame(self): """Calculate data from a single frame of trajectory Don't worry about normalising, just deal with a single frame. """ raise NotImplementedError("Only implemented in child classes") def _prepare(self): """Set things up before the analysis loop begins""" pass # pylint: disable=unnecessary-pass def _conclude(self): """Finalise the results you've gathered. Called at the end of the :meth:`run` method to finish everything up. """ pass # pylint: disable=unnecessary-pass
[docs] def run(self, start=None, stop=None, step=None, verbose=None): """Perform the calculation Parameters ---------- start : int, optional start frame of analysis stop : int, optional stop frame of analysis step : int, optional number of frames to skip between each analysed frame verbose : bool, optional Turn on verbosity """ logger.info("Choosing frames to analyze") # if verbose unchanged, use class default verbose = getattr(self, '_verbose', False) if verbose is None else verbose self._setup_frames(self._trajectory, start, stop, step) logger.info("Starting preparation") self._prepare() for i, ts in enumerate(ProgressBar( self._trajectory[self.start:self.stop:self.step], verbose=verbose)): self._frame_index = i self._ts = ts self.frames[i] = ts.frame self.times[i] = ts.time # logger.info("--> Doing frame {} of {}".format(i+1, self.n_frames)) self._single_frame() logger.info("Finishing up") self._conclude() return self
[docs]class AnalysisFromFunction(AnalysisBase): r"""Create an :class:`AnalysisBase` from a function working on AtomGroups Parameters ---------- function : callable function to evaluate at each frame trajectory : mda.coordinates.Reader, optional trajectory to iterate over. If ``None`` the first AtomGroup found in args and kwargs is used as a source for the trajectory. *args : list arguments for ``function`` **kwargs : dict arguments for ``function`` and :class:`AnalysisBase` Attributes ---------- results.frames : numpy.ndarray simulation frames used in analysis results.times : numpy.ndarray simulation times used in analysis results.timeseries : numpy.ndarray Results for each frame of the wrapped function, stored after call to :meth:`AnalysisFromFunction.run`. Raises ------ ValueError if ``function`` has the same ``kwargs`` as :class:`AnalysisBase` Example ------- .. code-block:: python def rotation_matrix(mobile, ref): return mda.analysis.align.rotation_matrix(mobile, ref)[0] rot = AnalysisFromFunction(rotation_matrix, trajectory, mobile, ref).run() print(rot.results.timeseries) .. versionchanged:: 1.0.0 Support for directly passing the ``start``, ``stop``, and ``step`` arguments has been removed. These should instead be passed to :meth:`AnalysisFromFunction.run`. .. versionchanged:: 2.0.0 Former :attr:`results` are now stored as :attr:`results.timeseries` """ def __init__(self, function, trajectory=None, *args, **kwargs): if (trajectory is not None) and (not isinstance( trajectory, coordinates.base.ProtoReader)): args = (trajectory,) + args trajectory = None if trajectory is None: # all possible places to find trajectory for arg in itertools.chain(args, kwargs.values()): if isinstance(arg, AtomGroup): trajectory = arg.universe.trajectory break if trajectory is None: raise ValueError("Couldn't find a trajectory") self.function = function self.args = args self.kwargs = kwargs super(AnalysisFromFunction, self).__init__(trajectory) def _prepare(self): self.results.timeseries = [] def _single_frame(self): self.results.timeseries.append(self.function(*self.args, **self.kwargs)) def _conclude(self): self.results.frames = self.frames self.results.times = self.times self.results.timeseries = np.asarray(self.results.timeseries)
[docs]def analysis_class(function): r"""Transform a function operating on a single frame to an :class:`AnalysisBase` class. Parameters ---------- function : callable function to evaluate at each frame Attributes ---------- results.frames : numpy.ndarray simulation frames used in analysis results.times : numpy.ndarray simulation times used in analysis results.timeseries : numpy.ndarray Results for each frame of the wrapped function, stored after call to :meth:`AnalysisFromFunction.run`. Raises ------ ValueError if ``function`` has the same ``kwargs`` as :class:`AnalysisBase` Examples -------- For use in a library, we recommend the following style .. code-block:: python def rotation_matrix(mobile, ref): return mda.analysis.align.rotation_matrix(mobile, ref)[0] RotationMatrix = analysis_class(rotation_matrix) It can also be used as a decorator .. code-block:: python @analysis_class def RotationMatrix(mobile, ref): return mda.analysis.align.rotation_matrix(mobile, ref)[0] rot = RotationMatrix(u.trajectory, mobile, ref).run(step=2) print(rot.results.timeseries) .. versionchanged:: 2.0.0 Former ``results`` are now stored as ``results.timeseries`` """ class WrapperClass(AnalysisFromFunction): def __init__(self, trajectory=None, *args, **kwargs): super(WrapperClass, self).__init__(function, trajectory, *args, **kwargs) return WrapperClass
def _filter_baseanalysis_kwargs(function, kwargs): """ create two dictionaries with kwargs separated for function and AnalysisBase Parameters ---------- function : callable function to be called kwargs : dict keyword argument dictionary Returns ------- base_args : dict dictionary of AnalysisBase kwargs kwargs : dict kwargs without AnalysisBase kwargs Raises ------ ValueError if ``function`` has the same ``kwargs`` as :class:`AnalysisBase` """ try: # pylint: disable=deprecated-method base_argspec = inspect.getfullargspec(AnalysisBase.__init__) except AttributeError: # pylint: disable=deprecated-method base_argspec = inspect.getargspec(AnalysisBase.__init__) n_base_defaults = len(base_argspec.defaults) base_kwargs = {name: val for name, val in zip(base_argspec.args[-n_base_defaults:], base_argspec.defaults)} try: # pylint: disable=deprecated-method argspec = inspect.getfullargspec(function) except AttributeError: # pylint: disable=deprecated-method argspec = inspect.getargspec(function) for base_kw in base_kwargs.keys(): if base_kw in argspec.args: raise ValueError( "argument name '{}' clashes with AnalysisBase argument." "Now allowed are: {}".format(base_kw, base_kwargs.keys())) base_args = {} for argname, default in base_kwargs.items(): base_args[argname] = kwargs.pop(argname, default) return base_args, kwargs