# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Neighbor Search wrapper for MDAnalysis --- :mod:`MDAnalysis.lib.NeighborSearch`
===============================================================================
This module contains classes that allow neighbor searches directly with
`AtomGroup` objects from `MDAnalysis`.
"""
from __future__ import absolute_import
import numpy as np
from MDAnalysis.lib.distances import capped_distance
from MDAnalysis.lib.util import unique_int_1d
from MDAnalysis.core.groups import AtomGroup, Atom
[docs]class AtomNeighborSearch(object):
"""This class can be used to find all atoms/residues/segments within the
radius of a given query position.
For the neighbor search, this class uses the BioPython KDTree and its
wrapper PeriodicKDTree for non-periodic and periodic systems, respectively.
"""
def __init__(self, atom_group, box=None, bucket_size=10):
"""
Parameters
----------
atom_list : AtomGroup
list of atoms
box : array-like or ``None``, optional, default ``None``
Simulation cell dimensions in the form of
:attr:`MDAnalysis.trajectory.base.Timestep.dimensions` when
periodic boundary conditions should be taken into account for
the calculation of contacts.
bucket_size : int
Number of entries in leafs of the KDTree. If you suffer poor
performance you can play around with this number. Increasing the
`bucket_size` will speed up the construction of the KDTree but
slow down the search.
"""
self.atom_group = atom_group
self._u = atom_group.universe
self._box = box
#self.kdtree = PeriodicKDTree(box=box, leafsize=bucket_size)
[docs] def search(self, atoms, radius, level='A'):
"""
Return all atoms/residues/segments that are within *radius* of the
atoms in *atoms*.
Parameters
----------
atoms : AtomGroup, MDAnalysis.core.groups.Atom
list of atoms
radius : float
Radius for search in Angstrom.
level : str
char (A, R, S). Return atoms(A), residues(R) or segments(S) within
*radius* of *atoms*.
"""
unique_idx = []
if isinstance(atoms, Atom):
positions = atoms.position.reshape(1, 3)
else:
positions = atoms.positions
pairs = capped_distance(positions, self.atom_group.positions,
radius, box=self._box, return_distances=False)
if pairs.size > 0:
unique_idx = unique_int_1d(np.asarray(pairs[:, 1], dtype=np.int64))
return self._index2level(unique_idx, level)
def _index2level(self, indices, level):
"""Convert list of atom_indices in a AtomGroup to either the
Atoms or segments/residues containing these atoms.
Parameters
----------
indices
list of atom indices
level : str
char (A, R, S). Return atoms(A), residues(R) or segments(S) within
*radius* of *atoms*.
"""
n_atom_list = self.atom_group[indices]
if level == 'A':
if not n_atom_list:
return []
else:
return n_atom_list
elif level == 'R':
return list({a.residue for a in n_atom_list})
elif level == 'S':
return list(set([a.segment for a in n_atom_list]))
else:
raise NotImplementedError('{0}: level not implemented'.format(level))