Source code for MDAnalysis.analysis.rms

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Calculating root mean square quantities --- :mod:`MDAnalysis.analysis.rms`
==========================================================================

:Author: Oliver Beckstein, David L. Dotson, John Detlefs
:Year: 2016
:Copyright: GNU Public License v2

.. versionadded:: 0.7.7
.. versionchanged:: 0.11.0
   Added :class:`RMSF` analysis.
.. versionchanged:: 0.16.0
   Refactored RMSD to fit AnalysisBase API

The module contains code to analyze root mean square quantities such
as the coordinat root mean square distance (:class:`RMSD`) or the
per-residue root mean square fluctuations (:class:`RMSF`).

This module uses the fast QCP algorithm [Theobald2005]_ to calculate
the root mean square distance (RMSD) between two coordinate sets (as
implemented in
:func:`MDAnalysis.lib.qcprot.CalcRMSDRotationalMatrix`).

When using this module in published work please cite [Theobald2005]_.


See Also
--------
:mod:`MDAnalysis.analysis.align`
   aligning structures based on RMSD
:mod:`MDAnalysis.lib.qcprot`
   implements the fast RMSD algorithm.


Example applications
--------------------

Calculating RMSD for multiple domains
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In this example we will globally fit a protein to a reference
structure and investigate the relative movements of domains by
computing the RMSD of the domains to the reference. The example is a
DIMS trajectory of adenylate kinase, which samples a large
closed-to-open transition. The protein consists of the CORE, LID, and
NMP domain.

* superimpose on the closed structure (frame 0 of the trajectory),
  using backbone atoms

* calculate the backbone RMSD and RMSD for CORE, LID, NMP (backbone atoms)

The trajectory is included with the test data files. The data in
:attr:`RMSD.rmsd` is plotted with :func:`matplotlib.pyplot.plot`::

   import MDAnalysis
   from MDAnalysis.tests.datafiles import PSF,DCD,CRD
   u = MDAnalysis.Universe(PSF,DCD)
   ref = MDAnalysis.Universe(PSF,DCD)     # reference closed AdK (1AKE) (with the default ref_frame=0)
   #ref = MDAnalysis.Universe(PSF,CRD)    # reference open AdK (4AKE)

   import MDAnalysis.analysis.rms

   R = MDAnalysis.analysis.rms.RMSD(u, ref,
              select="backbone",             # superimpose on whole backbone of the whole protein
              groupselections=["backbone and (resid 1-29 or resid 60-121 or resid 160-214)",   # CORE
                               "backbone and resid 122-159",                                   # LID
                               "backbone and resid 30-59"],                                    # NMP
              filename="rmsd_all_CORE_LID_NMP.dat")
   R.run()

   import matplotlib.pyplot as plt
   rmsd = R.rmsd.T   # transpose makes it easier for plotting
   time = rmsd[1]
   fig = plt.figure(figsize=(4,4))
   ax = fig.add_subplot(111)
   ax.plot(time, rmsd[2], 'k-',  label="all")
   ax.plot(time, rmsd[3], 'k--', label="CORE")
   ax.plot(time, rmsd[4], 'r--', label="LID")
   ax.plot(time, rmsd[5], 'b--', label="NMP")
   ax.legend(loc="best")
   ax.set_xlabel("time (ps)")
   ax.set_ylabel(r"RMSD ($\\AA$)")
   fig.savefig("rmsd_all_CORE_LID_NMP_ref1AKE.pdf")


Functions
---------

.. autofunction:: rmsd

Analysis classes
----------------

.. autoclass:: RMSD
   :members:
   :inherited-members:

   .. attribute:: rmsd

       Contains the time series of the RMSD as an N×3 :class:`numpy.ndarray`
       array with content ``[[frame, time (ps), RMSD (A)], [...], ...]``.

.. autoclass:: RMSF
   :members:
   :inherited-members:

   .. attribute:: rmsf

      Results are stored in this N-length :class:`numpy.ndarray` array,
      giving RMSFs for each of the given atoms.

"""
from __future__ import division, absolute_import

from six.moves import zip
from six import string_types

import numpy as np

import logging
import warnings

import MDAnalysis.lib.qcprot as qcp
from MDAnalysis.analysis.base import AnalysisBase
from MDAnalysis.exceptions import SelectionError, NoDataError
from MDAnalysis.lib.log import ProgressMeter
from MDAnalysis.lib.util import asiterable, iterable, get_weights, deprecate


logger = logging.getLogger('MDAnalysis.analysis.rmsd')


[docs]def rmsd(a, b, weights=None, center=False, superposition=False): r"""Returns RMSD between two coordinate sets `a` and `b`. `a` and `b` are arrays of the coordinates of N atoms of shape :math:`N times 3` as generated by, e.g., :meth:`MDAnalysis.core.groups.AtomGroup.positions`. Note ---- If you use trajectory data from simulations performed under **periodic boundary conditions** then you *must make your molecules whole* before performing RMSD calculations so that the centers of mass of the mobile and reference structure are properly superimposed. Parameters ---------- a : array_like coordinates to align to `b` b : array_like coordinates to align to (same shape as `a`) weights : array_like (optional) 1D array with weights, use to compute weighted average center : bool (optional) subtract center of geometry before calculation. With weights given compute weighted average as center. superposition : bool (optional) perform a rotational and translational superposition with the fast QCP algorithm [Theobald2005]_ before calculating the RMSD; implies ``center=True``. Returns ------- rmsd : float RMSD between `a` and `b` Notes ----- The RMSD :math:`\rho(t)` as a function of time is calculated as .. math:: \rho(t) = \sqrt{\frac{1}{N} \sum_{i=1}^N w_i \left(\mathbf{x}_i(t) - \mathbf{x}_i^{\text{ref}}\right)^2} It is the Euclidean distance in configuration space of the current configuration (possibly after optimal translation and rotation) from a reference configuration divided by :math:`1/\sqrt{N}` where :math:`N` is the number of coordinates. The weights :math:`w_i` are calculated from the input weights `weights` :math:`w'_i` as relative to the mean: .. math:: w_i = \frac{w'_i}{\langle w' \rangle} Example ------- >>> u = Universe(PSF,DCD) >>> bb = u.select_atoms('backbone') >>> A = bb.positions.copy() # coordinates of first frame >>> u.trajectory[-1] # forward to last frame >>> B = bb.positions.copy() # coordinates of last frame >>> rmsd(A, B, center=True) 3.9482355416565049 .. versionchanged: 0.8.1 *center* keyword added .. versionchanged: 0.14.0 *superposition* keyword added """ a = np.asarray(a, dtype=np.float64) b = np.asarray(b, dtype=np.float64) N = b.shape[0] if a.shape != b.shape: raise ValueError('a and b must have same shape') # superposition only works if structures are centered if center or superposition: # make copies (do not change the user data!) # weights=None is equivalent to all weights 1 a = a - np.average(a, axis=0, weights=weights) b = b - np.average(b, axis=0, weights=weights) if weights is not None: if len(weights) != len(a): raise ValueError('weights must have same length as a and b') # weights are constructed as relative to the mean weights = np.asarray(weights, dtype=np.float64) / np.mean(weights) if superposition: return qcp.CalcRMSDRotationalMatrix(a, b, N, None, weights) else: if weights is not None: return np.sqrt(np.sum(weights[:, np.newaxis] * ((a - b) ** 2)) / N) else: return np.sqrt(np.sum((a - b) ** 2) / N)
def process_selection(select): """Return a canonical selection dictionary. Parameters ---------- select : str or tuple or dict - `str` -> Any valid string selection - `dict` -> ``{'mobile':sel1, 'reference':sel2}`` - `tuple` -> ``(sel1, sel2)`` Returns ------- dict selections for 'reference' and 'mobile'. Values are guarenteed to be iterable (so that one can provide selections to retain order) Notes ----- The dictionary input for `select` can be generated by :func:`fasta2select` based on a ClustalW_ or STAMP_ sequence alignment. """ if isinstance(select, string_types): select = {'reference': str(select), 'mobile': str(select)} elif type(select) is tuple: try: select = {'mobile': select[0], 'reference': select[1]} except IndexError: raise IndexError("select must contain two selection strings " "(reference, mobile)") elif type(select) is dict: # compatability hack to use new nomenclature try: select['mobile'] select['reference'] except KeyError: raise KeyError("select dictionary must contain entries for keys " "'mobile' and 'reference'.") else: raise TypeError("'select' must be either a string, 2-tuple, or dict") select['mobile'] = asiterable(select['mobile']) select['reference'] = asiterable(select['reference']) return select
[docs]class RMSD(AnalysisBase): r"""Class to perform RMSD analysis on a trajectory. The RMSD will be computed for two groups of atoms and all frames in the trajectory belonging to `atomgroup`. The groups of atoms are obtained by applying the selection selection `select` to the changing `atomgroup` and the fixed `reference`. Note ---- If you use trajectory data from simulations performed under **periodic boundary conditions** then you *must make your molecules whole* before performing RMSD calculations so that the centers of mass of the selected and reference structure are properly superimposed. Run the analysis with :meth:`RMSD.run`, which stores the results in the array :attr:`RMSD.rmsd`. """ def __init__(self, atomgroup, reference=None, select='all', groupselections=None, filename="rmsd.dat", weights=None, tol_mass=0.1, ref_frame=0, **kwargs): # DEPRECATION: remove filename kwarg in 1.0 r"""Parameters ---------- atomgroup : AtomGroup or Universe Group of atoms for which the RMSD is calculated. If a trajectory is associated with the atoms then the computation iterates over the trajectory. reference : AtomGroup or Universe (optional) Group of reference atoms; if ``None`` then the current frame of `atomgroup` is used. select : str or dict or tuple (optional) The selection to operate on; can be one of: 1. any valid selection string for :meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that produces identical selections in `atomgroup` and `reference`; or 2. a dictionary ``{'mobile': sel1, 'reference': sel2}`` where *sel1* and *sel2* are valid selection strings that are applied to `atomgroup` and `reference` respectively (the :func:`MDAnalysis.analysis.align.fasta2select` function returns such a dictionary based on a ClustalW_ or STAMP_ sequence alignment); or 3. a tuple ``(sel1, sel2)`` When using 2. or 3. with *sel1* and *sel2* then these selection strings are applied to `atomgroup` and `reference` respectively and should generate *groups of equivalent atoms*. *sel1* and *sel2* can each also be a *list of selection strings* to generate a :class:`~MDAnalysis.core.groups.AtomGroup` with defined atom order as described under :ref:`ordered-selections-label`). groupselections : list (optional) A list of selections as described for `select`, with the difference that these selections are *always applied to the full universes*, i.e., ``atomgroup.universe.select_atoms(sel1)`` and ``reference.universe.select_atoms(sel2)``. Each selection describes additional RMSDs to be computed *after the structures have been superimposed* according to `select`. No additional fitting is performed.The output contains one additional column for each selection. .. Note:: Experimental feature. Only limited error checking implemented. filename : str (optional) write RMSD into file with :meth:`RMSD.save` .. deprecated:; 0.19.0 `filename` will be removed together with :meth:`save` in 1.0. weights : {"mass", ``None``} or array_like (optional) choose weights. With ``"mass"`` uses masses as weights; with ``None`` weigh each atom equally. If a float array of the same length as `atomgroup` is provided, use each element of the `array_like` as a weight for the corresponding atom in `atomgroup`. tol_mass : float (optional) Reject match if the atomic masses for matched atoms differ by more than `tol_mass`. ref_frame : int (optional) frame index to select frame from `reference` verbose : bool (optional) Show detailed progress of the calculation if set to ``True``; the default is ``False``. Raises ------ SelectionError If the selections from `atomgroup` and `reference` do not match. TypeError If `weights` is not of the appropriate type; see also :func:`MDAnalysis.lib.util.get_weights` ValueError If `weights` are not compatible with `atomgroup` (not the same length) or if it is not a 1D array (see :func:`MDAnalysis.lib.util.get_weights`). A :exc:`ValueError` is also raised if `weights` are not compatible with `groupselections`: only equal weights (``weights=None``) or mass-weighted (``weights="mass"``) are supported for additional `groupselections`. Notes ----- The root mean square deviation :math:`\rho(t)` of a group of :math:`N` atoms relative to a reference structure as a function of time is calculated as .. math:: \rho(t) = \sqrt{\frac{1}{N} \sum_{i=1}^N w_i \left(\mathbf{x}_i(t) - \mathbf{x}_i^{\text{ref}}\right)^2} The weights :math:`w_i` are calculated from the input weights `weights` :math:`w'_i` as relative to the mean of the input weights: .. math:: w_i = \frac{w'_i}{\langle w' \rangle} The selected coordinates from `atomgroup` are optimally superimposed (translation and rotation) on the `reference` coordinates at each time step as to minimize the RMSD. Douglas Theobald's fast QCP algorithm [Theobald2005]_ is used for the rotational superposition and to calculate the RMSD (see :mod:`MDAnalysis.lib.qcprot` for implementation details). The class runs various checks on the input to ensure that the two atom groups can be compared. This includes a comparison of atom masses (i.e., only the positions of atoms of the same mass will be considered to be correct for comparison). If masses should not be checked, just set `tol_mass` to a large value such as 1000. .. _ClustalW: http://www.clustal.org/ .. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/ See Also -------- rmsd .. versionadded:: 0.7.7 .. versionchanged:: 0.8 `groupselections` added .. versionchanged:: 0.16.0 Flexible weighting scheme with new `weights` keyword. .. deprecated:: 0.16.0 Instead of ``mass_weighted=True`` (removal in 0.17.0) use new ``weights='mass'``; refactored to fit with AnalysisBase API .. versionchanged:: 0.17.0 removed deprecated `mass_weighted` keyword; `groupselections` are *not* rotationally superimposed any more. .. deprecated:: 0.19.0 `filename` will be removed in 1.0 """ super(RMSD, self).__init__(atomgroup.universe.trajectory, **kwargs) self.atomgroup = atomgroup self.reference = reference if reference is not None else self.atomgroup select = process_selection(select) self.groupselections = ([process_selection(s) for s in groupselections] if groupselections is not None else []) self.weights = weights self.tol_mass = tol_mass self.ref_frame = ref_frame self.filename = filename # DEPRECATED in 0.19.0, remove in 1.0.0 self.ref_atoms = self.reference.select_atoms(*select['reference']) self.mobile_atoms = self.atomgroup.select_atoms(*select['mobile']) if len(self.ref_atoms) != len(self.mobile_atoms): err = ("Reference and trajectory atom selections do " "not contain the same number of atoms: " "N_ref={0:d}, N_traj={1:d}".format(self.ref_atoms.n_atoms, self.mobile_atoms.n_atoms)) logger.exception(err) raise SelectionError(err) logger.info("RMS calculation " "for {0:d} atoms.".format(len(self.ref_atoms))) mass_mismatches = (np.absolute((self.ref_atoms.masses - self.mobile_atoms.masses)) > self.tol_mass) if np.any(mass_mismatches): # diagnostic output: logger.error("Atoms: reference | mobile") for ar, at in zip(self.ref_atoms, self.mobile_atoms): if ar.name != at.name: logger.error("{0!s:>4} {1:3d} {2!s:>3} {3!s:>3} {4:6.3f}" "| {5!s:>4} {6:3d} {7!s:>3} {8!s:>3}" "{9:6.3f}".format(ar.segid, ar.resid, ar.resname, ar.name, ar.mass, at.segid, at.resid, at.resname, at.name, at.mass)) errmsg = ("Inconsistent selections, masses differ by more than" "{0:f}; mis-matching atoms" "are shown above.".format(self.tol_mass)) logger.error(errmsg) raise SelectionError(errmsg) del mass_mismatches # TODO: # - make a group comparison a class that contains the checks above # - use this class for the *select* group and the additional # *groupselections* groups each a dict with reference/mobile self._groupselections_atoms = [ { 'reference': self.reference.universe.select_atoms(*s['reference']), 'mobile': self.atomgroup.universe.select_atoms(*s['mobile']), } for s in self.groupselections] # sanity check for igroup, (sel, atoms) in enumerate(zip(self.groupselections, self._groupselections_atoms)): if len(atoms['mobile']) != len(atoms['reference']): logger.exception('SelectionError: Group Selection') raise SelectionError( "Group selection {0}: {1} | {2}: Reference and trajectory " "atom selections do not contain the same number of atoms: " "N_ref={3}, N_traj={4}".format( igroup, sel['reference'], sel['mobile'], len(atoms['reference']), len(atoms['mobile']))) # Explicitly check for "mass" because this option CAN # be used with groupselection. (get_weights() returns the mass array # for "mass") if not iterable(self.weights) and self.weights == "mass": pass else: self.weights = get_weights(self.mobile_atoms, self.weights) # cannot use arbitrary weight array (for superposition) with # groupselections because arrays will not match if (len(self.groupselections) > 0 and ( iterable(self.weights) or self.weights not in ("mass", None))): raise ValueError("groupselections can only be combined with " "weights=None or weights='mass', not a weight " "array.") # initialized to note for testing the save function self.rmsd = None def _prepare(self): self._n_atoms = self.mobile_atoms.n_atoms if not iterable(self.weights) and self.weights == 'mass': self.weights = self.ref_atoms.masses if self.weights is not None: self.weights = np.asarray(self.weights, dtype=np.float64) / np.mean(self.weights) current_frame = self.reference.universe.trajectory.ts.frame try: # Move to the ref_frame # (coordinates MUST be stored in case the ref traj is advanced # elsewhere or if ref == mobile universe) self.reference.universe.trajectory[self.ref_frame] self._ref_com = self.ref_atoms.center(self.weights) # makes a copy self._ref_coordinates = self.ref_atoms.positions - self._ref_com if self._groupselections_atoms: self._groupselections_ref_coords64 = [(self.reference. select_atoms(*s['reference']). positions.astype(np.float64)) for s in self.groupselections] finally: # Move back to the original frame self.reference.universe.trajectory[current_frame] self._ref_coordinates64 = self._ref_coordinates.astype(np.float64) if self._groupselections_atoms: # Only carry out a rotation if we want to calculate secondary # RMSDs. # R: rotation matrix that aligns r-r_com, x~-x~com # (x~: selected coordinates, x: all coordinates) # Final transformed traj coordinates: x' = (x-x~_com)*R + ref_com self._rot = np.zeros(9, dtype=np.float64) # allocate space self._R = self._rot.reshape(3, 3) else: self._rot = None self.rmsd = np.zeros((self.n_frames, 3 + len(self._groupselections_atoms))) self._pm.format = ("RMSD {rmsd:5.2f} A at frame " "{step:5d}/{numsteps} [{percentage:5.1f}%]") self._mobile_coordinates64 = self.mobile_atoms.positions.copy().astype(np.float64) def _single_frame(self): mobile_com = self.mobile_atoms.center(self.weights).astype(np.float64) self._mobile_coordinates64[:] = self.mobile_atoms.positions self._mobile_coordinates64 -= mobile_com self.rmsd[self._frame_index, :2] = self._ts.frame, self._trajectory.time if self._groupselections_atoms: # superimpose structures: MDAnalysis qcprot needs Nx3 coordinate # array with float64 datatype (float32 leads to errors up to 1e-3 in # RMSD). Note that R is defined in such a way that it acts **to the # left** so that we can easily use broadcasting and save one # expensive numpy transposition. self.rmsd[self._frame_index, 2] = qcp.CalcRMSDRotationalMatrix( self._ref_coordinates64, self._mobile_coordinates64, self._n_atoms, self._rot, self.weights) self._R[:, :] = self._rot.reshape(3, 3) # Transform each atom in the trajectory (use inplace ops to # avoid copying arrays) (Marginally (~3%) faster than # "ts.positions[:] = (ts.positions - x_com) * R + ref_com".) self._ts.positions[:] -= mobile_com # R acts to the left & is broadcasted N times. self._ts.positions[:] = np.dot(self._ts.positions, self._R) self._ts.positions += self._ref_com # 2) calculate secondary RMSDs (without any further # superposition) for igroup, (refpos, atoms) in enumerate( zip(self._groupselections_ref_coords64, self._groupselections_atoms), 3): self.rmsd[self._frame_index, igroup] = rmsd( refpos, atoms['mobile'].positions, weights=self.weights, center=False, superposition=False) else: # only calculate RMSD by setting the Rmatrix to None (no need # to carry out the rotation as we already get the optimum RMSD) self.rmsd[self._frame_index, 2] = qcp.CalcRMSDRotationalMatrix( self._ref_coordinates64, self._mobile_coordinates64, self._n_atoms, None, self.weights) self._pm.rmsd = self.rmsd[self._frame_index, 2] @deprecate(release="0.19.0", remove="1.0.0", message="You can instead use " "``np.savetxt(filename, RMSD.rmsd)``.") def save(self, filename=None): """Save RMSD from :attr:`RMSD.rmsd` to text file *filename*. Parameters ---------- filename : str (optional) if no filename is given the default provided to the constructor is used. """ filename = filename or self.filename if filename is not None: if self.rmsd is None: raise NoDataError("rmsd has not been calculated yet") np.savetxt(filename, self.rmsd) logger.info("Wrote RMSD timeseries to file %r", filename) return filename
[docs]class RMSF(AnalysisBase): r"""Calculate RMSF of given atoms across a trajectory. Note ---- No RMSD-superposition is performed; it is assumed that the user is providing a trajectory where the protein of interest has been structurally aligned to a reference structure (see the Examples section below). The protein also has be whole because periodic boundaries are not taken into account. Run the analysis with :meth:`RMSF.run`, which stores the results in the array :attr:`RMSF.rmsf`. """ def __init__(self, atomgroup, **kwargs): r"""Parameters ---------- atomgroup : AtomGroup Atoms for which RMSF is calculated start : int (optional) starting frame, default None becomes 0. stop : int (optional) Frame index to stop analysis. Default: None becomes n_frames. Iteration stops *before* this frame number, which means that the trajectory would be read until the end. step : int (optional) step between frames, default None becomes 1. verbose : bool (optional) Show detailed progress of the calculation if set to ``True``; the default is ``False``. Raises ------ ValueError raised if negative values are calculated, which indicates that a numerical overflow or underflow occured Notes ----- The root mean square fluctuation of an atom :math:`i` is computed as the time average .. math:: \rho_i = \sqrt{\left\langle (\mathbf{x}_i - \langle\mathbf{x}_i\rangle)^2 \right\rangle} No mass weighting is performed. This method implements an algorithm for computing sums of squares while avoiding overflows and underflows [Welford1962]_. Examples -------- In this example we calculate the residue RMSF fluctuations by analyzing the :math:`\text{C}_\alpha` atoms. First we need to fit the trajectory to the average structure as a reference. That requires calculating the average structure first. Because we need to analyze and manipulate the same trajectory multiple times, we are going to load it into memory using the :mod:`~MDAnalysis.coordinates.MemoryReader`. (If your trajectory does not fit into memory, you will need to :ref:`write out intermediate trajectories <writing-trajectories>` to disk or :ref:`generate an in-memory universe <creating-in-memory-trajectory-label>` that only contains, say, the protein):: import MDAnalysis as mda from MDAnalysis.analysis import align from MDAnalysis.tests.datafiles import TPR, XTC u = mda.Universe(TPR, XTC, in_memory=True) protein = u.select_atoms("protein") # 1) need a step to center and make whole: this trajectory # contains the protein being split across periodic boundaries # # TODO # 2) fit to the initial frame to get a better average structure # (the trajectory is changed in memory) prealigner = align.AlignTraj(u, select="protein and name CA", in_memory=True).run() # 3) reference = average structure reference_coordinates = u.trajectory.timeseries(asel=protein).mean(axis=1) # make a reference structure (need to reshape into a 1-frame "trajectory") reference = mda.Merge(protein).load_new( reference_coordinates[:, None, :], order="afc") We created a new universe ``reference`` that contains a single frame with the averaged coordinates of the protein. Now we need to fit the whole trajectory to the reference by minimizing the RMSD. We use :class:`MDAnalysis.analysis.align.AlignTraj`:: aligner = align.AlignTraj(u, reference, select="protein and name CA", in_memory=True).run() The trajectory is now fitted to the reference (the RMSD is stored as `aligner.rmsd` for further inspection). Now we can calculate the RMSF:: from MDAnalysis.analysis.rms import RMSF calphas = protein.select_atoms("name CA") rmsfer = RMSF(calphas, verbose=True).run() and plot:: import matplotlib.pyplot as plt plt.plot(calphas.resnums, rmsfer.rmsf) References ---------- .. [Welford1962] B. P. Welford (1962). "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4(3):419-420. .. versionadded:: 0.11.0 .. versionchanged:: 0.16.0 refactored to fit with AnalysisBase API .. deprecated:: 0.16.0 the keyword argument `quiet` is deprecated in favor of `verbose`. .. versionchanged:: 0.17.0 removed unused keyword `weights` """ super(RMSF, self).__init__(atomgroup.universe.trajectory, **kwargs) self.atomgroup = atomgroup def _prepare(self): self.sumsquares = np.zeros((self.atomgroup.n_atoms, 3)) self.mean = self.sumsquares.copy() def _single_frame(self): k = self._frame_index self.sumsquares += (k / (k+1.0)) * (self.atomgroup.positions - self.mean) ** 2 self.mean = (k * self.mean + self.atomgroup.positions) / (k + 1) def _conclude(self): k = self._frame_index self.rmsf = np.sqrt(self.sumsquares.sum(axis=1) / (k + 1)) if not (self.rmsf >= 0).all(): raise ValueError("Some RMSF values negative; overflow " + "or underflow occurred")