# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
Calculating root mean square quantities --- :mod:`MDAnalysis.analysis.rms`
==========================================================================
:Author: Oliver Beckstein, David L. Dotson, John Detlefs
:Year: 2016
:Copyright: GNU Public License v2
.. versionadded:: 0.7.7
.. versionchanged:: 0.11.0
Added :class:`RMSF` analysis.
.. versionchanged:: 0.16.0
Refactored RMSD to fit AnalysisBase API
The module contains code to analyze root mean square quantities such
as the coordinat root mean square distance (:class:`RMSD`) or the
per-residue root mean square fluctuations (:class:`RMSF`).
This module uses the fast QCP algorithm [Theobald2005]_ to calculate
the root mean square distance (RMSD) between two coordinate sets (as
implemented in
:func:`MDAnalysis.lib.qcprot.CalcRMSDRotationalMatrix`).
When using this module in published work please cite [Theobald2005]_.
See Also
--------
:mod:`MDAnalysis.analysis.align`
aligning structures based on RMSD
:mod:`MDAnalysis.lib.qcprot`
implements the fast RMSD algorithm.
Example applications
--------------------
Calculating RMSD for multiple domains
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this example we will globally fit a protein to a reference
structure and investigate the relative movements of domains by
computing the RMSD of the domains to the reference. The example is a
DIMS trajectory of adenylate kinase, which samples a large
closed-to-open transition. The protein consists of the CORE, LID, and
NMP domain.
* superimpose on the closed structure (frame 0 of the trajectory),
using backbone atoms
* calculate the backbone RMSD and RMSD for CORE, LID, NMP (backbone atoms)
The trajectory is included with the test data files. The data in
:attr:`RMSD.rmsd` is plotted with :func:`matplotlib.pyplot.plot`::
import MDAnalysis
from MDAnalysis.tests.datafiles import PSF,DCD,CRD
u = MDAnalysis.Universe(PSF,DCD)
ref = MDAnalysis.Universe(PSF,DCD) # reference closed AdK (1AKE) (with the default ref_frame=0)
#ref = MDAnalysis.Universe(PSF,CRD) # reference open AdK (4AKE)
import MDAnalysis.analysis.rms
R = MDAnalysis.analysis.rms.RMSD(u, ref,
select="backbone", # superimpose on whole backbone of the whole protein
groupselections=["backbone and (resid 1-29 or resid 60-121 or resid 160-214)", # CORE
"backbone and resid 122-159", # LID
"backbone and resid 30-59"], # NMP
filename="rmsd_all_CORE_LID_NMP.dat")
R.run()
import matplotlib.pyplot as plt
rmsd = R.rmsd.T # transpose makes it easier for plotting
time = rmsd[1]
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
ax.plot(time, rmsd[2], 'k-', label="all")
ax.plot(time, rmsd[3], 'k--', label="CORE")
ax.plot(time, rmsd[4], 'r--', label="LID")
ax.plot(time, rmsd[5], 'b--', label="NMP")
ax.legend(loc="best")
ax.set_xlabel("time (ps)")
ax.set_ylabel(r"RMSD ($\\AA$)")
fig.savefig("rmsd_all_CORE_LID_NMP_ref1AKE.pdf")
Functions
---------
.. autofunction:: rmsd
Analysis classes
----------------
.. autoclass:: RMSD
:members:
:inherited-members:
.. attribute:: rmsd
Contains the time series of the RMSD as an N×3 :class:`numpy.ndarray`
array with content ``[[frame, time (ps), RMSD (A)], [...], ...]``.
.. autoclass:: RMSF
:members:
:inherited-members:
.. attribute:: rmsf
Results are stored in this N-length :class:`numpy.ndarray` array,
giving RMSFs for each of the given atoms.
"""
from __future__ import division, absolute_import
from six.moves import zip
from six import string_types
import numpy as np
import logging
import warnings
import MDAnalysis.lib.qcprot as qcp
from MDAnalysis.analysis.base import AnalysisBase
from MDAnalysis.exceptions import SelectionError, NoDataError
from MDAnalysis.lib.log import ProgressMeter
from MDAnalysis.lib.util import asiterable, iterable, get_weights, deprecate
logger = logging.getLogger('MDAnalysis.analysis.rmsd')
[docs]def rmsd(a, b, weights=None, center=False, superposition=False):
r"""Returns RMSD between two coordinate sets `a` and `b`.
`a` and `b` are arrays of the coordinates of N atoms of shape
:math:`N times 3` as generated by, e.g.,
:meth:`MDAnalysis.core.groups.AtomGroup.positions`.
Note
----
If you use trajectory data from simulations performed under **periodic
boundary conditions** then you *must make your molecules whole* before
performing RMSD calculations so that the centers of mass of the mobile and
reference structure are properly superimposed.
Parameters
----------
a : array_like
coordinates to align to `b`
b : array_like
coordinates to align to (same shape as `a`)
weights : array_like (optional)
1D array with weights, use to compute weighted average
center : bool (optional)
subtract center of geometry before calculation. With weights given
compute weighted average as center.
superposition : bool (optional)
perform a rotational and translational superposition with the fast QCP
algorithm [Theobald2005]_ before calculating the RMSD; implies
``center=True``.
Returns
-------
rmsd : float
RMSD between `a` and `b`
Notes
-----
The RMSD :math:`\rho(t)` as a function of time is calculated as
.. math::
\rho(t) = \sqrt{\frac{1}{N} \sum_{i=1}^N w_i \left(\mathbf{x}_i(t)
- \mathbf{x}_i^{\text{ref}}\right)^2}
It is the Euclidean distance in configuration space of the current
configuration (possibly after optimal translation and rotation) from a
reference configuration divided by :math:`1/\sqrt{N}` where :math:`N` is
the number of coordinates.
The weights :math:`w_i` are calculated from the input weights
`weights` :math:`w'_i` as relative to the mean:
.. math::
w_i = \frac{w'_i}{\langle w' \rangle}
Example
-------
>>> u = Universe(PSF,DCD)
>>> bb = u.select_atoms('backbone')
>>> A = bb.positions.copy() # coordinates of first frame
>>> u.trajectory[-1] # forward to last frame
>>> B = bb.positions.copy() # coordinates of last frame
>>> rmsd(A, B, center=True)
3.9482355416565049
.. versionchanged: 0.8.1
*center* keyword added
.. versionchanged: 0.14.0
*superposition* keyword added
"""
a = np.asarray(a, dtype=np.float64)
b = np.asarray(b, dtype=np.float64)
N = b.shape[0]
if a.shape != b.shape:
raise ValueError('a and b must have same shape')
# superposition only works if structures are centered
if center or superposition:
# make copies (do not change the user data!)
# weights=None is equivalent to all weights 1
a = a - np.average(a, axis=0, weights=weights)
b = b - np.average(b, axis=0, weights=weights)
if weights is not None:
if len(weights) != len(a):
raise ValueError('weights must have same length as a and b')
# weights are constructed as relative to the mean
weights = np.asarray(weights, dtype=np.float64) / np.mean(weights)
if superposition:
return qcp.CalcRMSDRotationalMatrix(a, b, N, None, weights)
else:
if weights is not None:
return np.sqrt(np.sum(weights[:, np.newaxis]
* ((a - b) ** 2)) / N)
else:
return np.sqrt(np.sum((a - b) ** 2) / N)
def process_selection(select):
"""Return a canonical selection dictionary.
Parameters
----------
select : str or tuple or dict
- `str` -> Any valid string selection
- `dict` -> ``{'mobile':sel1, 'reference':sel2}``
- `tuple` -> ``(sel1, sel2)``
Returns
-------
dict
selections for 'reference' and 'mobile'. Values are guarenteed to be
iterable (so that one can provide selections to retain order)
Notes
-----
The dictionary input for `select` can be generated by
:func:`fasta2select` based on a ClustalW_ or STAMP_ sequence alignment.
"""
if isinstance(select, string_types):
select = {'reference': str(select), 'mobile': str(select)}
elif type(select) is tuple:
try:
select = {'mobile': select[0], 'reference': select[1]}
except IndexError:
raise IndexError("select must contain two selection strings "
"(reference, mobile)")
elif type(select) is dict:
# compatability hack to use new nomenclature
try:
select['mobile']
select['reference']
except KeyError:
raise KeyError("select dictionary must contain entries for keys "
"'mobile' and 'reference'.")
else:
raise TypeError("'select' must be either a string, 2-tuple, or dict")
select['mobile'] = asiterable(select['mobile'])
select['reference'] = asiterable(select['reference'])
return select
[docs]class RMSD(AnalysisBase):
r"""Class to perform RMSD analysis on a trajectory.
The RMSD will be computed for two groups of atoms and all frames in the
trajectory belonging to `atomgroup`. The groups of atoms are obtained by
applying the selection selection `select` to the changing `atomgroup` and
the fixed `reference`.
Note
----
If you use trajectory data from simulations performed under **periodic
boundary conditions** then you *must make your molecules whole* before
performing RMSD calculations so that the centers of mass of the selected
and reference structure are properly superimposed.
Run the analysis with :meth:`RMSD.run`, which stores the results
in the array :attr:`RMSD.rmsd`.
"""
def __init__(self, atomgroup, reference=None, select='all',
groupselections=None, filename="rmsd.dat",
weights=None, tol_mass=0.1, ref_frame=0, **kwargs):
# DEPRECATION: remove filename kwarg in 1.0
r"""Parameters
----------
atomgroup : AtomGroup or Universe
Group of atoms for which the RMSD is calculated. If a trajectory is
associated with the atoms then the computation iterates over the
trajectory.
reference : AtomGroup or Universe (optional)
Group of reference atoms; if ``None`` then the current frame of
`atomgroup` is used.
select : str or dict or tuple (optional)
The selection to operate on; can be one of:
1. any valid selection string for
:meth:`~MDAnalysis.core.groups.AtomGroup.select_atoms` that
produces identical selections in `atomgroup` and `reference`; or
2. a dictionary ``{'mobile': sel1, 'reference': sel2}`` where *sel1*
and *sel2* are valid selection strings that are applied to
`atomgroup` and `reference` respectively (the
:func:`MDAnalysis.analysis.align.fasta2select` function returns such
a dictionary based on a ClustalW_ or STAMP_ sequence alignment); or
3. a tuple ``(sel1, sel2)``
When using 2. or 3. with *sel1* and *sel2* then these selection strings
are applied to `atomgroup` and `reference` respectively and should
generate *groups of equivalent atoms*. *sel1* and *sel2* can each also
be a *list of selection strings* to generate a
:class:`~MDAnalysis.core.groups.AtomGroup` with defined atom order as
described under :ref:`ordered-selections-label`).
groupselections : list (optional)
A list of selections as described for `select`, with the difference
that these selections are *always applied to the full universes*,
i.e., ``atomgroup.universe.select_atoms(sel1)`` and
``reference.universe.select_atoms(sel2)``. Each selection describes
additional RMSDs to be computed *after the structures have been
superimposed* according to `select`. No additional fitting is
performed.The output contains one additional column for each
selection.
.. Note:: Experimental feature. Only limited error checking
implemented.
filename : str (optional)
write RMSD into file with :meth:`RMSD.save`
.. deprecated:; 0.19.0
`filename` will be removed together with :meth:`save` in 1.0.
weights : {"mass", ``None``} or array_like (optional)
choose weights. With ``"mass"`` uses masses as weights; with ``None``
weigh each atom equally. If a float array of the same length as
`atomgroup` is provided, use each element of the `array_like` as a
weight for the corresponding atom in `atomgroup`.
tol_mass : float (optional)
Reject match if the atomic masses for matched atoms differ by more
than `tol_mass`.
ref_frame : int (optional)
frame index to select frame from `reference`
verbose : bool (optional)
Show detailed progress of the calculation if set to ``True``; the
default is ``False``.
Raises
------
SelectionError
If the selections from `atomgroup` and `reference` do not match.
TypeError
If `weights` is not of the appropriate type; see also
:func:`MDAnalysis.lib.util.get_weights`
ValueError
If `weights` are not compatible with `atomgroup` (not the same
length) or if it is not a 1D array (see
:func:`MDAnalysis.lib.util.get_weights`).
A :exc:`ValueError` is also raised if `weights` are not compatible
with `groupselections`: only equal weights (``weights=None``) or
mass-weighted (``weights="mass"``) are supported for additional
`groupselections`.
Notes
-----
The root mean square deviation :math:`\rho(t)` of a group of :math:`N`
atoms relative to a reference structure as a function of time is
calculated as
.. math::
\rho(t) = \sqrt{\frac{1}{N} \sum_{i=1}^N w_i \left(\mathbf{x}_i(t)
- \mathbf{x}_i^{\text{ref}}\right)^2}
The weights :math:`w_i` are calculated from the input weights `weights`
:math:`w'_i` as relative to the mean of the input weights:
.. math::
w_i = \frac{w'_i}{\langle w' \rangle}
The selected coordinates from `atomgroup` are optimally superimposed
(translation and rotation) on the `reference` coordinates at each time step
as to minimize the RMSD. Douglas Theobald's fast QCP algorithm
[Theobald2005]_ is used for the rotational superposition and to calculate
the RMSD (see :mod:`MDAnalysis.lib.qcprot` for implementation details).
The class runs various checks on the input to ensure that the two atom
groups can be compared. This includes a comparison of atom masses (i.e.,
only the positions of atoms of the same mass will be considered to be
correct for comparison). If masses should not be checked, just set
`tol_mass` to a large value such as 1000.
.. _ClustalW: http://www.clustal.org/
.. _STAMP: http://www.compbio.dundee.ac.uk/manuals/stamp.4.2/
See Also
--------
rmsd
.. versionadded:: 0.7.7
.. versionchanged:: 0.8
`groupselections` added
.. versionchanged:: 0.16.0
Flexible weighting scheme with new `weights` keyword.
.. deprecated:: 0.16.0
Instead of ``mass_weighted=True`` (removal in 0.17.0) use new
``weights='mass'``; refactored to fit with AnalysisBase API
.. versionchanged:: 0.17.0
removed deprecated `mass_weighted` keyword; `groupselections`
are *not* rotationally superimposed any more.
.. deprecated:: 0.19.0
`filename` will be removed in 1.0
"""
super(RMSD, self).__init__(atomgroup.universe.trajectory,
**kwargs)
self.atomgroup = atomgroup
self.reference = reference if reference is not None else self.atomgroup
select = process_selection(select)
self.groupselections = ([process_selection(s) for s in groupselections]
if groupselections is not None else [])
self.weights = weights
self.tol_mass = tol_mass
self.ref_frame = ref_frame
self.filename = filename # DEPRECATED in 0.19.0, remove in 1.0.0
self.ref_atoms = self.reference.select_atoms(*select['reference'])
self.mobile_atoms = self.atomgroup.select_atoms(*select['mobile'])
if len(self.ref_atoms) != len(self.mobile_atoms):
err = ("Reference and trajectory atom selections do "
"not contain the same number of atoms: "
"N_ref={0:d}, N_traj={1:d}".format(self.ref_atoms.n_atoms,
self.mobile_atoms.n_atoms))
logger.exception(err)
raise SelectionError(err)
logger.info("RMS calculation "
"for {0:d} atoms.".format(len(self.ref_atoms)))
mass_mismatches = (np.absolute((self.ref_atoms.masses -
self.mobile_atoms.masses)) >
self.tol_mass)
if np.any(mass_mismatches):
# diagnostic output:
logger.error("Atoms: reference | mobile")
for ar, at in zip(self.ref_atoms, self.mobile_atoms):
if ar.name != at.name:
logger.error("{0!s:>4} {1:3d} {2!s:>3} {3!s:>3} {4:6.3f}"
"| {5!s:>4} {6:3d} {7!s:>3} {8!s:>3}"
"{9:6.3f}".format(ar.segid, ar.resid,
ar.resname, ar.name,
ar.mass, at.segid, at.resid,
at.resname, at.name,
at.mass))
errmsg = ("Inconsistent selections, masses differ by more than"
"{0:f}; mis-matching atoms"
"are shown above.".format(self.tol_mass))
logger.error(errmsg)
raise SelectionError(errmsg)
del mass_mismatches
# TODO:
# - make a group comparison a class that contains the checks above
# - use this class for the *select* group and the additional
# *groupselections* groups each a dict with reference/mobile
self._groupselections_atoms = [
{
'reference': self.reference.universe.select_atoms(*s['reference']),
'mobile': self.atomgroup.universe.select_atoms(*s['mobile']),
}
for s in self.groupselections]
# sanity check
for igroup, (sel, atoms) in enumerate(zip(self.groupselections,
self._groupselections_atoms)):
if len(atoms['mobile']) != len(atoms['reference']):
logger.exception('SelectionError: Group Selection')
raise SelectionError(
"Group selection {0}: {1} | {2}: Reference and trajectory "
"atom selections do not contain the same number of atoms: "
"N_ref={3}, N_traj={4}".format(
igroup, sel['reference'], sel['mobile'],
len(atoms['reference']), len(atoms['mobile'])))
# Explicitly check for "mass" because this option CAN
# be used with groupselection. (get_weights() returns the mass array
# for "mass")
if not iterable(self.weights) and self.weights == "mass":
pass
else:
self.weights = get_weights(self.mobile_atoms, self.weights)
# cannot use arbitrary weight array (for superposition) with
# groupselections because arrays will not match
if (len(self.groupselections) > 0 and (
iterable(self.weights) or self.weights not in ("mass", None))):
raise ValueError("groupselections can only be combined with "
"weights=None or weights='mass', not a weight "
"array.")
# initialized to note for testing the save function
self.rmsd = None
def _prepare(self):
self._n_atoms = self.mobile_atoms.n_atoms
if not iterable(self.weights) and self.weights == 'mass':
self.weights = self.ref_atoms.masses
if self.weights is not None:
self.weights = np.asarray(self.weights, dtype=np.float64) / np.mean(self.weights)
current_frame = self.reference.universe.trajectory.ts.frame
try:
# Move to the ref_frame
# (coordinates MUST be stored in case the ref traj is advanced
# elsewhere or if ref == mobile universe)
self.reference.universe.trajectory[self.ref_frame]
self._ref_com = self.ref_atoms.center(self.weights)
# makes a copy
self._ref_coordinates = self.ref_atoms.positions - self._ref_com
if self._groupselections_atoms:
self._groupselections_ref_coords64 = [(self.reference.
select_atoms(*s['reference']).
positions.astype(np.float64)) for s in
self.groupselections]
finally:
# Move back to the original frame
self.reference.universe.trajectory[current_frame]
self._ref_coordinates64 = self._ref_coordinates.astype(np.float64)
if self._groupselections_atoms:
# Only carry out a rotation if we want to calculate secondary
# RMSDs.
# R: rotation matrix that aligns r-r_com, x~-x~com
# (x~: selected coordinates, x: all coordinates)
# Final transformed traj coordinates: x' = (x-x~_com)*R + ref_com
self._rot = np.zeros(9, dtype=np.float64) # allocate space
self._R = self._rot.reshape(3, 3)
else:
self._rot = None
self.rmsd = np.zeros((self.n_frames,
3 + len(self._groupselections_atoms)))
self._pm.format = ("RMSD {rmsd:5.2f} A at frame "
"{step:5d}/{numsteps} [{percentage:5.1f}%]")
self._mobile_coordinates64 = self.mobile_atoms.positions.copy().astype(np.float64)
def _single_frame(self):
mobile_com = self.mobile_atoms.center(self.weights).astype(np.float64)
self._mobile_coordinates64[:] = self.mobile_atoms.positions
self._mobile_coordinates64 -= mobile_com
self.rmsd[self._frame_index, :2] = self._ts.frame, self._trajectory.time
if self._groupselections_atoms:
# superimpose structures: MDAnalysis qcprot needs Nx3 coordinate
# array with float64 datatype (float32 leads to errors up to 1e-3 in
# RMSD). Note that R is defined in such a way that it acts **to the
# left** so that we can easily use broadcasting and save one
# expensive numpy transposition.
self.rmsd[self._frame_index, 2] = qcp.CalcRMSDRotationalMatrix(
self._ref_coordinates64, self._mobile_coordinates64,
self._n_atoms, self._rot, self.weights)
self._R[:, :] = self._rot.reshape(3, 3)
# Transform each atom in the trajectory (use inplace ops to
# avoid copying arrays) (Marginally (~3%) faster than
# "ts.positions[:] = (ts.positions - x_com) * R + ref_com".)
self._ts.positions[:] -= mobile_com
# R acts to the left & is broadcasted N times.
self._ts.positions[:] = np.dot(self._ts.positions, self._R)
self._ts.positions += self._ref_com
# 2) calculate secondary RMSDs (without any further
# superposition)
for igroup, (refpos, atoms) in enumerate(
zip(self._groupselections_ref_coords64,
self._groupselections_atoms), 3):
self.rmsd[self._frame_index, igroup] = rmsd(
refpos, atoms['mobile'].positions,
weights=self.weights,
center=False, superposition=False)
else:
# only calculate RMSD by setting the Rmatrix to None (no need
# to carry out the rotation as we already get the optimum RMSD)
self.rmsd[self._frame_index, 2] = qcp.CalcRMSDRotationalMatrix(
self._ref_coordinates64, self._mobile_coordinates64,
self._n_atoms, None, self.weights)
self._pm.rmsd = self.rmsd[self._frame_index, 2]
@deprecate(release="0.19.0", remove="1.0.0",
message="You can instead use "
"``np.savetxt(filename, RMSD.rmsd)``.")
def save(self, filename=None):
"""Save RMSD from :attr:`RMSD.rmsd` to text file *filename*.
Parameters
----------
filename : str (optional)
if no filename is given the default provided to the constructor is
used.
"""
filename = filename or self.filename
if filename is not None:
if self.rmsd is None:
raise NoDataError("rmsd has not been calculated yet")
np.savetxt(filename, self.rmsd)
logger.info("Wrote RMSD timeseries to file %r", filename)
return filename
[docs]class RMSF(AnalysisBase):
r"""Calculate RMSF of given atoms across a trajectory.
Note
----
No RMSD-superposition is performed; it is assumed that the user is
providing a trajectory where the protein of interest has been structurally
aligned to a reference structure (see the Examples section below). The
protein also has be whole because periodic boundaries are not taken into
account.
Run the analysis with :meth:`RMSF.run`, which stores the results
in the array :attr:`RMSF.rmsf`.
"""
def __init__(self, atomgroup, **kwargs):
r"""Parameters
----------
atomgroup : AtomGroup
Atoms for which RMSF is calculated
start : int (optional)
starting frame, default None becomes 0.
stop : int (optional)
Frame index to stop analysis. Default: None becomes
n_frames. Iteration stops *before* this frame number,
which means that the trajectory would be read until the end.
step : int (optional)
step between frames, default None becomes 1.
verbose : bool (optional)
Show detailed progress of the calculation if set to ``True``; the
default is ``False``.
Raises
------
ValueError
raised if negative values are calculated, which indicates that a
numerical overflow or underflow occured
Notes
-----
The root mean square fluctuation of an atom :math:`i` is computed as the
time average
.. math::
\rho_i = \sqrt{\left\langle (\mathbf{x}_i - \langle\mathbf{x}_i\rangle)^2 \right\rangle}
No mass weighting is performed.
This method implements an algorithm for computing sums of squares while
avoiding overflows and underflows [Welford1962]_.
Examples
--------
In this example we calculate the residue RMSF fluctuations by analyzing
the :math:`\text{C}_\alpha` atoms. First we need to fit the trajectory
to the average structure as a reference. That requires calculating the
average structure first. Because we need to analyze and manipulate the
same trajectory multiple times, we are going to load it into memory
using the :mod:`~MDAnalysis.coordinates.MemoryReader`. (If your
trajectory does not fit into memory, you will need to :ref:`write out
intermediate trajectories <writing-trajectories>` to disk or
:ref:`generate an in-memory universe
<creating-in-memory-trajectory-label>` that only contains, say, the
protein)::
import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import TPR, XTC
u = mda.Universe(TPR, XTC, in_memory=True)
protein = u.select_atoms("protein")
# 1) need a step to center and make whole: this trajectory
# contains the protein being split across periodic boundaries
#
# TODO
# 2) fit to the initial frame to get a better average structure
# (the trajectory is changed in memory)
prealigner = align.AlignTraj(u, select="protein and name CA", in_memory=True).run()
# 3) reference = average structure
reference_coordinates = u.trajectory.timeseries(asel=protein).mean(axis=1)
# make a reference structure (need to reshape into a 1-frame "trajectory")
reference = mda.Merge(protein).load_new(
reference_coordinates[:, None, :], order="afc")
We created a new universe ``reference`` that contains a single frame
with the averaged coordinates of the protein. Now we need to fit the
whole trajectory to the reference by minimizing the RMSD. We use
:class:`MDAnalysis.analysis.align.AlignTraj`::
aligner = align.AlignTraj(u, reference, select="protein and name CA", in_memory=True).run()
The trajectory is now fitted to the reference (the RMSD is stored as
`aligner.rmsd` for further inspection). Now we can calculate the RMSF::
from MDAnalysis.analysis.rms import RMSF
calphas = protein.select_atoms("name CA")
rmsfer = RMSF(calphas, verbose=True).run()
and plot::
import matplotlib.pyplot as plt
plt.plot(calphas.resnums, rmsfer.rmsf)
References
----------
.. [Welford1962] B. P. Welford (1962). "Note on a Method for
Calculating Corrected Sums of Squares and Products." Technometrics
4(3):419-420.
.. versionadded:: 0.11.0
.. versionchanged:: 0.16.0
refactored to fit with AnalysisBase API
.. deprecated:: 0.16.0
the keyword argument `quiet` is deprecated in favor of `verbose`.
.. versionchanged:: 0.17.0
removed unused keyword `weights`
"""
super(RMSF, self).__init__(atomgroup.universe.trajectory, **kwargs)
self.atomgroup = atomgroup
def _prepare(self):
self.sumsquares = np.zeros((self.atomgroup.n_atoms, 3))
self.mean = self.sumsquares.copy()
def _single_frame(self):
k = self._frame_index
self.sumsquares += (k / (k+1.0)) * (self.atomgroup.positions - self.mean) ** 2
self.mean = (k * self.mean + self.atomgroup.positions) / (k + 1)
def _conclude(self):
k = self._frame_index
self.rmsf = np.sqrt(self.sumsquares.sum(axis=1) / (k + 1))
if not (self.rmsf >= 0).all():
raise ValueError("Some RMSF values negative; overflow " +
"or underflow occurred")