Source code for MDAnalysis.analysis.rdf

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#

r"""Radial Distribution Functions --- :mod:`MDAnalysis.analysis.rdf`
================================================================

This module contains two classes to calculate radial
`pair distribution functions`_ (`radial distribution functions`_ or "RDF").
The RDF :math:`g_{ab}(r)` between types of particles :math:`a` and :math:`b` is

.. math::

   g_{ab}(r) = (N_{a} N_{b})^{-1} \sum_{i=1}^{N_a} \sum_{j=1}^{N_b}
               \langle \delta(|\mathbf{r}_i - \mathbf{r}_j| - r) \rangle

which is normalized so that the RDF becomes 1 for large separations in a
homogenous system. The RDF effectively counts the average number of :math:`b`
neighbours in a shell at distance :math:`r` around a :math:`a` particle and
represents it as a density.

The radial cumulative distribution function is

.. math::

   G_{ab}(r) = \int_0^r \!\!dr' 4\pi r'^2 g_{ab}(r')

and the average number of :math:`b` particles within radius :math:`r`

.. math::

   N_{ab}(r) = \rho G_{ab}(r)

(with the appropriate density :math:`\rho`). The latter function can be used to
compute, for instance, coordination numbers such as the number of neighbors in
the first solvation shell :math:`N(r_1)` where :math:`r_1` is the position of
the first minimum in :math:`g(r)`.


.. _`pair distribution functions`:
   https://en.wikipedia.org/wiki/Pair_distribution_function
.. _`radial distribution functions`:
   https://en.wikipedia.org/wiki/Radial_distribution_function


Average radial distribution function
------------------------------------

:class:`InterRDF` is a tool to calculate average radial distribution functions
between two groups of atoms. Suppose we have two AtomGroups ``A`` and
``B``. ``A`` contains atom ``A1``, ``A2``, and ``B`` contains ``B1``,
``B2``. Give ``A`` and ``B`` to class:`InterRDF`, the output will be the
average of RDFs between ``A1`` and ``B1``, ``A1`` and ``B2``, ``A2`` and
``B1``, ``A2`` and ``B2``. A typical application is to calculate the RDF of
solvent with itself or with another solute.

.. autoclass:: InterRDF
   :members:
   :inherited-members:


Site-specific radial distribution function
------------------------------------------

:class:`InterRDF_s` calculates site-specific radial distribution
functions. Instead of two groups of atoms it takes as input a list of pairs of
AtomGroup, ``[[A, B], [C, D], ...]``. Give the same ``A`` and ``B`` to
:class:`InterRDF_s`, the output will be a list of RDFs between ``A1`` and
``B1``, ``A1`` and ``B2``, ``A2`` and ``B1``, ``A2`` and ``B2`` (and similarly
for ``C`` and ``D``). These site-specific radial distribution functions are
typically calculated if one is interested in the solvation shells of a ligand
in a binding site or the solvation of specific residues in a protein. A common
use case is to choose ``A`` and ``C`` to be AtomGroups that only contain a
single atom and ``W`` all solvent molecules: ``InterRDF_s(u, [[A, W], [B,
W]])`` will then produce the RDF of solvent around atom ``A[0]`` and around
atom ``B[0]``.


.. autoclass:: InterRDF_s
   :members:
   :inherited-members:


.. Not Implemented yet:
.. - Structure factor?
.. - Coordination number

"""
from __future__ import division, absolute_import
import numpy as np

from ..lib.util import blocks_of
from ..lib import distances
from .base import AnalysisBase
from six.moves import zip, range


[docs]class InterRDF(AnalysisBase): """Intermolecular pair distribution function InterRDF(g1, g2, nbins=75, range=(0.0, 15.0)) Arguments --------- g1 : AtomGroup First AtomGroup g2 : AtomGroup Second AtomGroup nbins : int (optional) Number of bins in the histogram [75] range : tuple or list (optional) The size of the RDF [0.0, 15.0] exclusion_block : tuple (optional) A tuple representing the tile to exclude from the distance array. [None] start : int (optional) The frame to start at (default is first) stop : int (optional) The frame to end at (default is last) step : int (optional) The step size through the trajectory in frames (default is every frame) verbose : bool (optional) Show detailed progress of the calculation if set to ``True``; the default is ``False``. Example ------- First create the :class:`InterRDF` object, by supplying two AtomGroups then use the :meth:`run` method :: rdf = InterRDF(ag1, ag2) rdf.run() Results are available through the :attr:`bins` and :attr:`rdf` attributes:: plt.plot(rdf.bins, rdf.rdf) The `exclusion_block` keyword allows the masking of pairs from within the same molecule. For example, if there are 7 of each atom in each molecule, the exclusion mask `(7, 7)` can be used. .. versionadded:: 0.13.0 """ def __init__(self, g1, g2, nbins=75, range=(0.0, 15.0), exclusion_block=None, **kwargs): super(InterRDF, self).__init__(g1.universe.trajectory, **kwargs) self.g1 = g1 self.g2 = g2 self.u = g1.universe self.rdf_settings = {'bins': nbins, 'range': range} self._exclusion_block = exclusion_block def _prepare(self): # Empty histogram to store the RDF count, edges = np.histogram([-1], **self.rdf_settings) count = count.astype(np.float64) count *= 0.0 self.count = count self.edges = edges self.bins = 0.5 * (edges[:-1] + edges[1:]) # Need to know average volume self.volume = 0.0 # Set the max range to filter the search radius self._maxrange = self.rdf_settings['range'][1] def _single_frame(self): pairs, dist = distances.capped_distance(self.g1.positions, self.g2.positions, self._maxrange, box=self.u.dimensions) # Maybe exclude same molecule distances if self._exclusion_block is not None: idxA, idxB = pairs[:, 0]//self._exclusion_block[0], pairs[:, 1]//self._exclusion_block[1] mask = np.where(idxA != idxB)[0] dist = dist[mask] count = np.histogram(dist, **self.rdf_settings)[0] self.count += count self.volume += self._ts.volume def _conclude(self): # Number of each selection nA = len(self.g1) nB = len(self.g2) N = nA * nB # If we had exclusions, take these into account if self._exclusion_block: xA, xB = self._exclusion_block nblocks = nA / xA N -= xA * xB * nblocks # Volume in each radial shell vol = np.power(self.edges[1:], 3) - np.power(self.edges[:-1], 3) vol *= 4/3.0 * np.pi # Average number density box_vol = self.volume / self.n_frames density = N / box_vol rdf = self.count / (density * vol * self.n_frames) self.rdf = rdf
[docs]class InterRDF_s(AnalysisBase): """Site-specific intermolecular pair distribution function Arguments --------- u : Universe a Universe that contains atoms in `ags` ags : list a list of pairs of :class:`~MDAnalysis.core.groups.AtomGroup` instances nbins : int (optional) Number of bins in the histogram [75] range : tuple or list (optional) The size of the RDF [0.0, 15.0] start : int (optional) The frame to start at (default is first) stop : int (optional) The frame to end at (default is last) step : int (optional) The step size through the trajectory in frames (default is every frame) Example ------- First create the :class:`InterRDF_s` object, by supplying one Universe and one list of pairs of AtomGroups, then use the :meth:`~InterRDF_s.run` method:: from MDAnalysisTests.datafiles import GRO_MEMPROT, XTC_MEMPROT u = mda.Universe(GRO_MEMPROT, XTC_MEMPROT) s1 = u.select_atoms('name ZND and resid 289') s2 = u.select_atoms('(name OD1 or name OD2) and resid 51 and sphzone 5.0 (resid 289)') s3 = u.select_atoms('name ZND and (resid 291 or resid 292)') s4 = u.select_atoms('(name OD1 or name OD2) and sphzone 5.0 (resid 291)') ags = [[s1, s2], [s3, s4]] rdf = InterRDF_s(u, ags) rdf.run() Results are available through the :attr:`bins` and :attr:`rdf` attributes:: plt.plot(rdf.bins, rdf.rdf[0][0][0]) (Which plots the rdf between the first atom in ``s1`` and the first atom in ``s2``) To generate the *cumulative distribution function* (cdf), use the :meth:`~InterRDF_s.get_cdf` method :: cdf = rdf.get_cdf() Results are available through the :attr:'cdf' attribute:: plt.plot(rdf.bins, rdf.cdf[0][0][0]) (Which plots the cdf between the first atom in ``s1`` and the first atom in ``s2``) .. versionadded:: 0.19.0 """ def __init__(self, u, ags, nbins=75, range=(0.0, 15.0), density=True, **kwargs): super(InterRDF_s, self).__init__(u.universe.trajectory, **kwargs) # List of pairs of AtomGroups self.ags = ags self.u = u self._density = density self.rdf_settings = {'bins': nbins, 'range': range} def _prepare(self): # Empty list to store the RDF count_list = [] count, edges = np.histogram([-1], **self.rdf_settings) count_list = [np.zeros((ag1.n_atoms, ag2.n_atoms, len(count)), dtype=np.float64) for ag1, ag2 in self.ags] self.count = count_list self.edges = edges self.bins = 0.5 * (edges[:-1] + edges[1:]) # Need to know average volume self.volume = 0.0 self._maxrange = self.rdf_settings['range'][1] def _single_frame(self): for i, (ag1, ag2) in enumerate(self.ags): pairs, dist = distances.capped_distance(ag1.positions, ag2.positions, self._maxrange, box=self.u.dimensions) for j, (idx1, idx2) in enumerate(pairs): self.count[i][idx1, idx2, :] += np.histogram(dist[j], **self.rdf_settings)[0] self.volume += self._ts.volume def _conclude(self): # Volume in each radial shell vol = np.power(self.edges[1:], 3) - np.power(self.edges[:-1], 3) vol *= 4/3.0 * np.pi # Empty lists to restore indices, RDF indices = [] rdf = [] for i, (ag1, ag2) in enumerate(self.ags): # Number of each selection nA = len(ag1) nB = len(ag2) N = nA * nB indices.append([ag1.indices, ag2.indices]) # Average number density box_vol = self.volume / self.n_frames density = N / box_vol if self._density: rdf.append(self.count[i] / (density * vol * self.n_frames)) else: rdf.append(self.count[i] / (vol * self.n_frames)) self.rdf = rdf self.indices = indices
[docs] def get_cdf(self): """Calculate the cumulative distribution functions (CDF) for all sites. Note that this is the actual count within a given radius, i.e., :math:`N(r)`. Returns ------- cdf : list list of arrays with the same structure as :attr:`rdf` """ # Calculate cumulative distribution function # Empty list to restore CDF cdf = [] for count in self.count: cdf.append(np.cumsum(count, axis=2) / self.n_frames) # Results stored in self.cdf # self.cdf is a list of cdf between pairs of AtomGroups in ags self.cdf = cdf return cdf