# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
r"""Radial Distribution Functions --- :mod:`MDAnalysis.analysis.rdf`
================================================================
This module contains two classes to calculate radial
`pair distribution functions`_ (`radial distribution functions`_ or "RDF").
The RDF :math:`g_{ab}(r)` between types of particles :math:`a` and :math:`b` is
.. math::
g_{ab}(r) = (N_{a} N_{b})^{-1} \sum_{i=1}^{N_a} \sum_{j=1}^{N_b}
\langle \delta(|\mathbf{r}_i - \mathbf{r}_j| - r) \rangle
which is normalized so that the RDF becomes 1 for large separations in a
homogenous system. The RDF effectively counts the average number of :math:`b`
neighbours in a shell at distance :math:`r` around a :math:`a` particle and
represents it as a density.
The radial cumulative distribution function is
.. math::
G_{ab}(r) = \int_0^r \!\!dr' 4\pi r'^2 g_{ab}(r')
and the average number of :math:`b` particles within radius :math:`r`
.. math::
N_{ab}(r) = \rho G_{ab}(r)
(with the appropriate density :math:`\rho`). The latter function can be used to
compute, for instance, coordination numbers such as the number of neighbors in
the first solvation shell :math:`N(r_1)` where :math:`r_1` is the position of
the first minimum in :math:`g(r)`.
.. _`pair distribution functions`:
https://en.wikipedia.org/wiki/Pair_distribution_function
.. _`radial distribution functions`:
https://en.wikipedia.org/wiki/Radial_distribution_function
Average radial distribution function
------------------------------------
:class:`InterRDF` is a tool to calculate average radial distribution functions
between two groups of atoms. Suppose we have two AtomGroups ``A`` and
``B``. ``A`` contains atom ``A1``, ``A2``, and ``B`` contains ``B1``,
``B2``. Give ``A`` and ``B`` to class:`InterRDF`, the output will be the
average of RDFs between ``A1`` and ``B1``, ``A1`` and ``B2``, ``A2`` and
``B1``, ``A2`` and ``B2``. A typical application is to calculate the RDF of
solvent with itself or with another solute.
.. autoclass:: InterRDF
:members:
:inherited-members:
Site-specific radial distribution function
------------------------------------------
:class:`InterRDF_s` calculates site-specific radial distribution
functions. Instead of two groups of atoms it takes as input a list of pairs of
AtomGroup, ``[[A, B], [C, D], ...]``. Give the same ``A`` and ``B`` to
:class:`InterRDF_s`, the output will be a list of RDFs between ``A1`` and
``B1``, ``A1`` and ``B2``, ``A2`` and ``B1``, ``A2`` and ``B2`` (and similarly
for ``C`` and ``D``). These site-specific radial distribution functions are
typically calculated if one is interested in the solvation shells of a ligand
in a binding site or the solvation of specific residues in a protein. A common
use case is to choose ``A`` and ``C`` to be AtomGroups that only contain a
single atom and ``W`` all solvent molecules: ``InterRDF_s(u, [[A, W], [B,
W]])`` will then produce the RDF of solvent around atom ``A[0]`` and around
atom ``B[0]``.
.. autoclass:: InterRDF_s
:members:
:inherited-members:
.. Not Implemented yet:
.. - Structure factor?
.. - Coordination number
"""
from __future__ import division, absolute_import
import numpy as np
from ..lib.util import blocks_of
from ..lib import distances
from .base import AnalysisBase
from six.moves import zip, range
[docs]class InterRDF(AnalysisBase):
"""Intermolecular pair distribution function
InterRDF(g1, g2, nbins=75, range=(0.0, 15.0))
Arguments
---------
g1 : AtomGroup
First AtomGroup
g2 : AtomGroup
Second AtomGroup
nbins : int (optional)
Number of bins in the histogram [75]
range : tuple or list (optional)
The size of the RDF [0.0, 15.0]
exclusion_block : tuple (optional)
A tuple representing the tile to exclude from the distance
array. [None]
start : int (optional)
The frame to start at (default is first)
stop : int (optional)
The frame to end at (default is last)
step : int (optional)
The step size through the trajectory in frames (default is
every frame)
verbose : bool (optional)
Show detailed progress of the calculation if set to ``True``; the
default is ``False``.
Example
-------
First create the :class:`InterRDF` object, by supplying two
AtomGroups then use the :meth:`run` method ::
rdf = InterRDF(ag1, ag2)
rdf.run()
Results are available through the :attr:`bins` and :attr:`rdf`
attributes::
plt.plot(rdf.bins, rdf.rdf)
The `exclusion_block` keyword allows the masking of pairs from
within the same molecule. For example, if there are 7 of each
atom in each molecule, the exclusion mask `(7, 7)` can be used.
.. versionadded:: 0.13.0
"""
def __init__(self, g1, g2,
nbins=75, range=(0.0, 15.0), exclusion_block=None,
**kwargs):
super(InterRDF, self).__init__(g1.universe.trajectory, **kwargs)
self.g1 = g1
self.g2 = g2
self.u = g1.universe
self.rdf_settings = {'bins': nbins,
'range': range}
self._exclusion_block = exclusion_block
def _prepare(self):
# Empty histogram to store the RDF
count, edges = np.histogram([-1], **self.rdf_settings)
count = count.astype(np.float64)
count *= 0.0
self.count = count
self.edges = edges
self.bins = 0.5 * (edges[:-1] + edges[1:])
# Need to know average volume
self.volume = 0.0
# Set the max range to filter the search radius
self._maxrange = self.rdf_settings['range'][1]
def _single_frame(self):
pairs, dist = distances.capped_distance(self.g1.positions,
self.g2.positions,
self._maxrange,
box=self.u.dimensions)
# Maybe exclude same molecule distances
if self._exclusion_block is not None:
idxA, idxB = pairs[:, 0]//self._exclusion_block[0], pairs[:, 1]//self._exclusion_block[1]
mask = np.where(idxA != idxB)[0]
dist = dist[mask]
count = np.histogram(dist, **self.rdf_settings)[0]
self.count += count
self.volume += self._ts.volume
def _conclude(self):
# Number of each selection
nA = len(self.g1)
nB = len(self.g2)
N = nA * nB
# If we had exclusions, take these into account
if self._exclusion_block:
xA, xB = self._exclusion_block
nblocks = nA / xA
N -= xA * xB * nblocks
# Volume in each radial shell
vol = np.power(self.edges[1:], 3) - np.power(self.edges[:-1], 3)
vol *= 4/3.0 * np.pi
# Average number density
box_vol = self.volume / self.n_frames
density = N / box_vol
rdf = self.count / (density * vol * self.n_frames)
self.rdf = rdf
[docs]class InterRDF_s(AnalysisBase):
"""Site-specific intermolecular pair distribution function
Arguments
---------
u : Universe
a Universe that contains atoms in `ags`
ags : list
a list of pairs of :class:`~MDAnalysis.core.groups.AtomGroup`
instances
nbins : int (optional)
Number of bins in the histogram [75]
range : tuple or list (optional)
The size of the RDF [0.0, 15.0]
start : int (optional)
The frame to start at (default is first)
stop : int (optional)
The frame to end at (default is last)
step : int (optional)
The step size through the trajectory in frames (default is
every frame)
Example
-------
First create the :class:`InterRDF_s` object, by supplying one Universe and
one list of pairs of AtomGroups, then use the :meth:`~InterRDF_s.run`
method::
from MDAnalysisTests.datafiles import GRO_MEMPROT, XTC_MEMPROT
u = mda.Universe(GRO_MEMPROT, XTC_MEMPROT)
s1 = u.select_atoms('name ZND and resid 289')
s2 = u.select_atoms('(name OD1 or name OD2) and resid 51 and sphzone 5.0 (resid 289)')
s3 = u.select_atoms('name ZND and (resid 291 or resid 292)')
s4 = u.select_atoms('(name OD1 or name OD2) and sphzone 5.0 (resid 291)')
ags = [[s1, s2], [s3, s4]]
rdf = InterRDF_s(u, ags)
rdf.run()
Results are available through the :attr:`bins` and :attr:`rdf` attributes::
plt.plot(rdf.bins, rdf.rdf[0][0][0])
(Which plots the rdf between the first atom in ``s1`` and the first atom in
``s2``)
To generate the *cumulative distribution function* (cdf), use the
:meth:`~InterRDF_s.get_cdf` method ::
cdf = rdf.get_cdf()
Results are available through the :attr:'cdf' attribute::
plt.plot(rdf.bins, rdf.cdf[0][0][0])
(Which plots the cdf between the first atom in ``s1`` and the first atom in
``s2``)
.. versionadded:: 0.19.0
"""
def __init__(self, u, ags,
nbins=75, range=(0.0, 15.0), density=True, **kwargs):
super(InterRDF_s, self).__init__(u.universe.trajectory, **kwargs)
# List of pairs of AtomGroups
self.ags = ags
self.u = u
self._density = density
self.rdf_settings = {'bins': nbins,
'range': range}
def _prepare(self):
# Empty list to store the RDF
count_list = []
count, edges = np.histogram([-1], **self.rdf_settings)
count_list = [np.zeros((ag1.n_atoms, ag2.n_atoms, len(count)), dtype=np.float64)
for ag1, ag2 in self.ags]
self.count = count_list
self.edges = edges
self.bins = 0.5 * (edges[:-1] + edges[1:])
# Need to know average volume
self.volume = 0.0
self._maxrange = self.rdf_settings['range'][1]
def _single_frame(self):
for i, (ag1, ag2) in enumerate(self.ags):
pairs, dist = distances.capped_distance(ag1.positions,
ag2.positions,
self._maxrange,
box=self.u.dimensions)
for j, (idx1, idx2) in enumerate(pairs):
self.count[i][idx1, idx2, :] += np.histogram(dist[j],
**self.rdf_settings)[0]
self.volume += self._ts.volume
def _conclude(self):
# Volume in each radial shell
vol = np.power(self.edges[1:], 3) - np.power(self.edges[:-1], 3)
vol *= 4/3.0 * np.pi
# Empty lists to restore indices, RDF
indices = []
rdf = []
for i, (ag1, ag2) in enumerate(self.ags):
# Number of each selection
nA = len(ag1)
nB = len(ag2)
N = nA * nB
indices.append([ag1.indices, ag2.indices])
# Average number density
box_vol = self.volume / self.n_frames
density = N / box_vol
if self._density:
rdf.append(self.count[i] / (density * vol * self.n_frames))
else:
rdf.append(self.count[i] / (vol * self.n_frames))
self.rdf = rdf
self.indices = indices
[docs] def get_cdf(self):
"""Calculate the cumulative distribution functions (CDF) for all sites.
Note that this is the actual count within a given radius, i.e.,
:math:`N(r)`.
Returns
-------
cdf : list
list of arrays with the same structure as :attr:`rdf`
"""
# Calculate cumulative distribution function
# Empty list to restore CDF
cdf = []
for count in self.count:
cdf.append(np.cumsum(count, axis=2) / self.n_frames)
# Results stored in self.cdf
# self.cdf is a list of cdf between pairs of AtomGroups in ags
self.cdf = cdf
return cdf