Source code for MDAnalysis.analysis.encore.clustering.ClusteringMethod

# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- https://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
# doi: 10.25080/majora-629e541a-00e
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""
clustering frontend --- :mod:`MDAnalysis.analysis.encore.clustering.ClusteringMethod`
=====================================================================================

The module defines classes for interfacing to various clustering algorithms.
One has been implemented natively, and will always be available, while
others are available only if scikit-learn is installed

:Author: Matteo Tiberti, Wouter Boomsma, Tone Bengtsen

.. versionadded:: 0.16.0

"""
from __future__ import absolute_import

import numpy as np
import warnings
import logging

# Import native affinity propagation implementation
from . import affinityprop

# Attempt to import scikit-learn clustering algorithms
try:
    import sklearn.cluster
except ImportError:
    sklearn = None
    msg = "sklearn.cluster could not be imported: some functionality will " \
          "not be available in encore.fit_clusters()"
    warnings.warn(msg, category=ImportWarning)
    logging.warning(msg)
    del msg


[docs]def encode_centroid_info(clusters, cluster_centers_indices): """ Adjust cluster indices to include centroid information as described in documentation for ClusterCollection """ values, indices = np.unique(clusters, return_inverse=True) for c_center in cluster_centers_indices: if clusters[c_center] != c_center: values[indices[c_center]] = c_center return values[indices]
[docs]class ClusteringMethod (object): """ Base class for any Clustering Method """ # Whether the method accepts a distance matrix accepts_distance_matrix=True def __call__(self, x): """ Parameters ---------- x either trajectory coordinate data (np.array) or an encore.utils.TriangularMatrix, encoding the conformational distance matrix Returns ------- numpy.array list of cluster indices """ raise NotImplementedError("Class {0} doesn't implement __call__()" .format(self.__class__.__name__))
[docs]class AffinityPropagationNative(ClusteringMethod): """ Interface to the natively implemented Affinity propagation procedure. """ def __init__(self, damping=0.9, preference=-1.0, max_iter=500, convergence_iter=50, add_noise=True): """ Parameters ---------- damping : float, optional Damping factor (default is 0.9). Parameter for the Affinity Propagation for clustering. preference : float, optional Preference parameter used in the Affinity Propagation algorithm for clustering (default -1.0). A high preference value results in many clusters, a low preference will result in fewer numbers of clusters. max_iter : int, optional Maximum number of iterations for affinity propagation (default is 500). convergence_iter : int, optional Minimum number of unchanging iterations to achieve convergence (default is 50). Parameter in the Affinity Propagation for clustering. add_noise : bool, optional Apply noise to similarity matrix before running clustering (default is True) """ self.damping = damping self.preference = preference self.max_iter = max_iter self.convergence_iter = convergence_iter self.add_noise = add_noise def __call__(self, distance_matrix): """ Parameters ---------- distance_matrix : encore.utils.TriangularMatrix conformational distance matrix Returns ------- numpy.array list of cluster indices """ clusters = affinityprop.AffinityPropagation( s=distance_matrix * -1., # invert sign preference=self.preference, lam=self.damping, max_iterations = self.max_iter, convergence = self.convergence_iter, noise=int(self.add_noise)) details = {} return clusters, details
if sklearn:
[docs] class AffinityPropagation(ClusteringMethod): """ Interface to the Affinity propagation clustering procedure implemented in sklearn. """ def __init__(self, damping=0.9, preference=-1.0, max_iter=500, convergence_iter=50, **kwargs): """ Parameters ---------- damping : float, optional Damping factor (default is 0.9). Parameter for the Affinity Propagation for clustering. preference : float, optional Preference parameter used in the Affinity Propagation algorithm for clustering (default -1.0). A high preference value results in many clusters, a low preference will result in fewer numbers of clusters. max_iter : int, optional Maximum number of iterations for affinity propagation (default is 500). convergence_iter : int, optional Minimum number of unchanging iterations to achieve convergence (default is 50). Parameter in the Affinity Propagation for clustering. """ self.ap = \ sklearn.cluster.AffinityPropagation( damping=damping, preference=preference, max_iter=max_iter, convergence_iter=convergence_iter, affinity="precomputed", **kwargs) def __call__(self, distance_matrix): """ Parameters ---------- distance_matrix : encore.utils.TriangularMatrix conformational distance matrix Returns ------- numpy.array list of cluster indices """ logging.info("Starting Affinity Propagation: {0}".format (self.ap.get_params())) # Convert from distance matrix to similarity matrix similarity_matrix = distance_matrix.as_array() * -1 clusters = self.ap.fit_predict(similarity_matrix) clusters = encode_centroid_info(clusters, self.ap.cluster_centers_indices_) details = {} return clusters, details
[docs] class DBSCAN(ClusteringMethod): """ Interface to the DBSCAN clustering procedure implemented in sklearn. """ def __init__(self, eps=0.5, min_samples=5, algorithm="auto", leaf_size=30, **kwargs): """ Parameters ---------- eps : float, optional (default = 0.5) The maximum distance between two samples for them to be considered as in the same neighborhood. min_samples : int, optional (default = 5) The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional The algorithm to be used by the NearestNeighbors module to compute pointwise distances and find nearest neighbors. See NearestNeighbors module documentation for details. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or cKDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. sample_weight : array, shape (n_samples,), optional Weight of each sample, such that a sample with a weight of at least ``min_samples`` is by itself a core sample; a sample with negative weight may inhibit its eps-neighbor from being core. Note that weights are absolute, and default to 1. """ self.dbscan = sklearn.cluster.DBSCAN(eps=eps, min_samples = min_samples, algorithm=algorithm, leaf_size = leaf_size, metric="precomputed", **kwargs) def __call__(self, distance_matrix): """ Parameters ---------- distance_matrix : encore.utils.TriangularMatrix conformational distance matrix Returns ------- numpy.array list of cluster indices """ logging.info("Starting DBSCAN: {0}".format( self.dbscan.get_params())) clusters = self.dbscan.fit_predict(distance_matrix.as_array()) if np.min(clusters == -1): clusters += 1 # No centroid information is provided by DBSCAN, so we just # pick random members cluster_representatives = np.unique(clusters, return_index=True)[1] clusters = encode_centroid_info(clusters, cluster_representatives) details = {} return clusters, details
[docs] class KMeans(ClusteringMethod): # Whether the method accepts a distance matrix accepts_distance_matrix = False """ Interface to the KMeans clustering procedure implemented in sklearn. """ def __init__(self, n_clusters, max_iter = 300, n_init = 10, init = 'k-means++', algorithm="auto", tol = 1e-4, verbose=False, random_state=None, copy_x=True, n_jobs=1, **kwargs): """ Parameters ---------- n_clusters : int The number of clusters to form as well as the number of centroids to generate. max_iter : int, optional (default 300) Maximum number of iterations of the k-means algorithm to run. n_init : int, optional (default 10) Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init : {'k-means++', 'random', or ndarray, or a callable}, optional Method for initialization, default to 'k-means++': 'k-means++' : selects initial cluster centers for k-mean clustering in a smart way to speed up convergence. See section Notes in k_init for more details. 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. If a callable is passed, it should take arguments X, k and and a ranndom state and return an initialization. precompute_distances : {'auto', True, False} Precompute distances (faster but takes more memory). 'auto' : do not precompute distances if n_samples * n_clusters > 12 million. This corresponds to about 100MB overhead per job using double precision. True : always precompute distances False : never precompute distances tol : float, optional (default 1e-4) The relative increment in the results before declaring convergence. verbose : boolean, optional (default False) Verbosity mode. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. copy_x : boolean, optional When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. """ self.kmeans = sklearn.cluster.KMeans(n_clusters = n_clusters, max_iter = max_iter, n_init = n_init, init = init, precompute_distances='auto', tol = tol, verbose=verbose, random_state=random_state, copy_x=copy_x, n_jobs=n_jobs, **kwargs) def __call__(self, coordinates): """ Parameters ---------- coordinates : np.array trajectory atom coordinates Returns ------- numpy.array list of cluster indices """ logging.info("Starting Kmeans: {0}".format( (self.kmeans.get_params()))) clusters = self.kmeans.fit_predict(coordinates) distances = self.kmeans.transform(coordinates) cluster_center_indices = np.argmin(distances, axis=0) clusters = encode_centroid_info(clusters, cluster_center_indices) details = {} return clusters, details